Structure Exploitation in Diagnosis

Sajjad Ahmed Siddiqi

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

August 2009

(© Sajjad Ahmed Siddiqi

Typeset in Palatino and Euler by TpX and IATpX 2¢ .

Except where otherwise indicated, this thesis is my own original work.

_A:}Y’)

Sajjad Ahmed Siddiqi
26 August 2009

To
My Father:
Muhammad Siddiq
and
My Mother:
Mamoona Akhter

Acknowledgements

In the name of Almighty Allah, the most merciful and the most beneficient, who en-
abled me to finish this work successfully. I pray to Him to show me the right path and
grant me success both in the world and the world hereafter.

My first and foremost gratitude goes to my supervisor Dr. Jinbo Huang, whose
technical help was vital in the completion of this work, as well as whose moral support
kept me working hard even during the times of despair and hardship.

I thank John Slaney, Andrew Slater, Anbulagan, Sylvie Thiebaux, Jussi Rintanen,
Alban Grastien, Arthur Choi, Mark Chavira and Brian Williams for providing much
needed help and advice at various levels during the course.

I cannot forget the moral help and valuable advice given to me by my parents,
brothers Rashid and Asaf, sisters and all my friends in and outside Australia. I feel
proud to dedicate this work to my parents. At this moment, I particularly remember
my father whose great vision of future led me throughout my academic career.

I deeply acknowledge the beautiful partneship of my wife Shaista who was always
supportive even when I had to work long hours, and who always helped me keep my
morale high during tough times.

Last but not least, I thank Asif Ali and Richard Hartley who privided help and

motivation to earn a Ph.D. scholarship at the ANU.

vii

Abstract

When a system behaves abnormally, a diagnosis is a set of system components whose
failure explains the abnormality. Generally, the number of diagnoses can be exponen-
tial in the number of components and only one of them represents the actual faults.

In Model-based diagnosis, the functionality of the system is described by a knowl-
edge base, called the model of the system. To find the failing components, sequern-
tial diagnosis takes a sequence of measurements of system variables and checks them
against the system model until the actual faults can be inferred. It is desired to reduce
the diagnostic cost, defined here as the number of measurements. Since computing
an optimal plan of measurements is intractable in general, probabilistic heuristics are
used to approximate it. For example, earlier approaches computed a set of minimal
diagnoses of the system, as it can characterize the set of all diagnoses, and employed a
heuristic based on reducing the entropy over the set of all diagnoses. This approach
generally has good performance in terms of diagnostic cost, but can fail to diagnose
large systems when the set of minimal diagnoses is too large.

Our goal is to scale the diagnosis to large systems by exploiting system structure,
while achieving low-cost diagnosis. In principle, system models can be compiled into
a tractable form, such as decomposable negation normal form (DNNF), which exploits
system structure to compactly represent the functionality as well as the set of all di-
agnoses of the system. DNNF can be compact in size even when the number of diag-
noses is exponentially large, while it supports efficient algorithms to perform common
diagnostic reasoning. For large systems, however, compilation can become a bottle-
neck due to the large number of variables necessary to model the health of individual
components. We further exploit system structure to scale the diagnosis.

We address the problem of diagnosing large systems using structural abstraction.
The idea is to perform diagnosis on an abstraction of the system that contains fewer
components. We propose a method of abstraction whose basic idea is to identify sub-
systems, called cones, that are dominated by single components, and model the health
of each cone with a single health variable. When a cone is found to be possibly faulty,
we diagnose it hierarchically by again identifying the cones inside it, and so on, until

we reach a base case. This idea can significantly reduce the number of health variables

ix

in the model allowing larger systems to be compiled and diagnosed. We show that
our algorithm is sound and complete with respect to computing minimum-cardinality
diagnoses.

We propose next a probabilistic heuristic to reduce the number of measurements
required to find the actual faults. Our heuristic involves the posterior probabilities of
component failures and the entropies of measurement points. Compared with the pre-
vious GDE framework, whose heuristic involves the entropy over the set of diagnoses
and estimated posterior probabilities, the new method avoids the often impractical
need to explicitly go through all diagnoses, and scales to much larger systems. All
probabilities required for sequential diagnosis are computed exactly and efficiently
once the system is modeled as a Bayesian network and compiled into a subset of
DNNF known as deterministic DNNF. We show that our heuristic remains effective in
hierarchical settings allowing it to be combined with abstraction, resulting in hierar-
chical sequential diagnosis which scales to larger benchmarks.

For the largest systems where even hierarchical diagnosis fails, we use a method
that converts the system into one that has a smaller abstraction and whose diagnoses
form a superset of those of the original system; the new system can then be diagnosed
and the result mapped back to the original system. This approach allows measure-
ment points to be computed and diagnosis performed on the largest benchmarks.

Finally, we apply the entropy-based approach to a branch-and-bound search al-
gorithm for computing a common diagnosis query known as the most probable expla-
nation (MPE). We study the impact of variable and value ordering on such a search
algorithm. We study several heuristics based on the entropies of variables and on the
notion of nogoods, and propose a new meta-heuristic that combines their strengths.
The new heuristic significantly improves the search efficiency, allowing many hard

problems to be solved for the first time.

Contents

Acknowledgements

Abstract

1 Introduction

L SiBaeko ot se Ll el o e e L el e <

il
i

1168
1.1.4

ModeliBased Diaohoesis fre. i Ao Ll e e
Bigsnosis b omapilation.,. o i st s da e o cnn & b s 8 B0
RS R ReiteriSVApRroachi. & . i i b s e i S
1.1.2.2 Diagnosis by Structure-based Compilation
SequentialiiDiacnosisE ol i fen S iRiei s el e e e s

MestBrobablelExplanationsysfissssasis st sty Lt r e o

0 @ontnibulions of ThisdlhesiS 4 stit et Lo iiare S P e (e

L2
199
1528
1.2.4

Structural Abstraction and Hierarchical Diagnosis
HetrnisticforsequentialiDiasmosisuuu sl N R
Reducins#AbstractioniSizeswithiClonin sSser e iaspsas e
Variable and Value Ordering for MPE Search

BBV eSS SERUCEUTE otr o7 o o et S asatpai it el e

2 Hierarchical Diagnosis
PEIIS ModelEbasediBiaon oSSt talin it i Lo bR e L

2.2 - DiagnosisibySituettre-hasediCompilationibess « . .o w s < 2 vos

2.2.1
229,
22.3
224
2:2.5
2,26

Strlciiiresbasedi@ompilationSE SRt S ut Sl s e
Restricting the Compilation to the Given Observation
Projecting the Compilation over Health Variables
S e et Sncte ten s S el e el bl el o o b w
Minimizationg S oo el Jeibitienas st altd bl « LA e .

EnumeratingeDiaomosesttt s o al S abd s LR R EL

I Notation and Definition Skt & - iluimta it narhemrae « L0800 i,

251

@irenits Dominatonstandi@oness: & . st st L BE R

xi

vii

ix

xii Contents
24324 »Abstraction of @ircuit-to iimindain e bR Bl R R 21
2.4« Hierarchical Diagnosis Algoerithin =5t 6 COrguutins sEEiisie e 22
241 Step 1 (dominators) .. « . aw .o s A e S 22
242 ¥ Step 2 (cones and their inputs) ==L o S SEEOCE G ISR 28
243+ Step:Biftop-level diagnosis) ., (Lo dions W BRaSERAL DESSSETE 24
2445 Step 4 (diagnosisof cones)s Ml Pa et ORI ST SRR, 26
2. 455 WAvoidingiRed tndan@y SEie S5 e SUETRIR S A 28
26 Seundnessiand @empletenessi: MR NEE S SIS A 30
2.5 sExperimentaliRestl s S5 S G U S RS SRR N 62
2i6Hh@onclusions! t kil SlisE s gt SR el R Al e 33
3 Adding Probabilities for Sequential Diagnosis 35
BUlE Probabilistic Hrameworki i it S i s i e 35
SalE oint BrobabilityilDistiribition s A R 85
Sl iBavesianiNetworle T i T s R F e R 57
Sl SR CompltineilRestenionsibyl@ompila iTom SIS 38
3.1.3.1 Bayesian Network as Multi-Linear Functions 38
3.1.3.2 Converting the Bayesian Network into Arithmetic Circuit 40
3116 SE ComputineilRiobabilityiofilvidemaett ST 42
3.1 susE@omputingiRosteriors HRECHEN RIS SEMERREER s 42
3.2 Rrevious WOork = s ooi MGl & AR res e SO el L ALl 43
82 ySequential Dia oEsISHte il SIS0 aiOi EReslie & TiEsl | 43
322, GDE Eramewonkee St 101 Batspy § gelall fRaiainss - e T 44
B 2.2 8L Minimizinos Entropye. ool Lk s St et (it 45
3.2.2.2 .. Computing Probabilities of Variables &« i, o o0 45
8P SR @omplitin g B xpected Entropy SR 46
3224 Computing Probabilities of Diagnoses 47
SIUL T D] 2] sF (el St s maiete fr it g bl ol e 47
38 TheNewMethod: = = 5 2 B S e Tl ol = L 48
g Sy stemiVledelinetand @onpilation i T 49
B3 Ml @onditionaliErobabilityAlialoles SIS 49
B84 28 Rropositional iV elin o s 50
8.82 "l eunisticforSequientialib)iacn os1sEs I, 51
3:32. 1S Feuristi@BasedioniEntropyfofilVine SR uutSss e 52
3:8.2.28 Improvingiklenristic?\cctnacy NI NI R S 52

3.3.3 ' The Algorithm: “..5 & o SSRGS SO Qo S 54

Contents Xiii

£ S penmmentaliResulis:en s il o s e U sl e e e el 55
o S CompanseitlGDE i s i bt bl - TR 56
Skl larser Penchimanks ' st s isinnc whgebsett - L34 57

&S onalusiohssan. L gy et sibnd b itees Ytoledasid e - B2 . 58
Hierarchical Sequential Diagnosis 59
Cl S e LT TG e R R A S o e R 59
LI sbrepositonal Emeodimg - L o) 205 L e e i, Bile 60
4.1:2 5 Prior.Failure Probabilitics for'Cones < . ahiwiiedd byt . 60
413 Measurement Point Selection and Stopping Criteria 61
434 dlilbeadooniffing i | o w0 SR0THSN Isdidisudi L S0 . 62
Al s Examplel wio v - s 0f A SHie R TG 64

40 "= Gatel @ onin oy SHs (e S e e s AT et (T 65
4.2/1 - Choices in Gate' Clonig M IEE5] WAt T] Piiimm Sigh e a0] 66

4.2 2= acnosiswmnth Gate @lonimg e (TG TE SRR T Sl La 67

4o s Expenimental Results @i =S Ouiaps - TS e SRnnad Sesian 68
4.3 158 L ffectivenessiafAbstractioni S i IRt Sy e 68

&.3.2 5 Ehteativenessof(Cale @lonim e SEF IR SO VBRI e 69

L Eonclusiones s B S e Lot L e P L e 71
Computing Most Probable Explanations 73
o dntroduction fEntissne) sesh i s e Smaies. Salulas iyt R ledan: & 73
RN otationfand DefinitionsEsss S W sl ey Saiaar See i Sl ooiaien g i 74
biarsCompriting MPE by Infeteneen B2t vl ausii e ol D wtision. ey 76
OIS HIREE Arialol el imyimartTomIMSE St i e ol s e 76

S BASRE@ompilationimesissiiStne s 5B DS L s e T

54, Computing MPE by SystematicSearehiu st by duib o bl duminee «Fevmst 7
544 Comprting Boundsusing Mini-Buckets .- . v wusvrsi i B e s 78

5.4.2 Compuiting Beundswising Node Splitting: s v s mihe Eonisirns 79
b2t s Branch-and=BotmndiSearahilisns su a i e s e s i o 80

bul.2 2yt EheiGlhioceof Variableso:Split: i o ¥ ssass bist. 81
5i5sariablefandiValiiel@rd eringifor MIPESearchiis B8 a0 i S iaian = . 81
SiotlEMbEniropyebased @rdenine MNSs St sffintean Leatt iaiesins. 1 82

S5 0sENopoedsbasedi@rdenimgisigart qac s S o o S 83
SN oeaadsic S this deus s e D e s 83

SIS Ord enmedldetiniSHelMEE il o Ul it i La 84

Xiv Contents

516t Experimental:ResultsErimiesm = o s o el S SR AENG Shii s i e 84
o6k Grid INetwiorkss ies sl ot Sl OB PR RERRIRI IO - St o 85

9i622 S RandomlylGeneratediN etyvonkc SIS AR o 88

5:6.3 . Networksfer'Genetielinleige Analaysis: « . & .. S0UREERL . 88

564 'Eomparison withi@fiwerilioplsita ' oG e il L Lk s 89

57 SEENEIUSION Sk Sk e SR e R I B R T e 90

6 Related Work 91
Gil L Stmictural Vethods, . w2 o maieael sl Saiiiigf et caainad] wisfl | STEG Uil
oIS BiaenosisiisinsiBooleamiSatisiiabilitySit S Baru i il

611 258 i erarchicaliViethods eSS e S P 92

6123 ProbabilisticiMethodsetgsegtst Vineeiisn s edeemie il L E LR 98
6.2.1 Optimal Policies using Heuristic Search and Entropy 98

622 8 SFoctsingioniirobablelBiasnosesiue Sy e weslptin L 94

6.2.3 Improving Probability Estimates to Lower Diagnostic Costs . . . 94

024 Decision-theoreficiirotibleshicotin sss SIS S S S e 94

6.2.5 Adding Uncertainty to Model-based Diagnosis 95

0.2:6/ 8 @ompuitinedVostRrobablelExplanations e EEa gt n 95

7 Conclusions and Future Work 97
Bibliography 99

Chapter 1

Introduction

When a system behaves abnormally, the purpose of diagnosis is to find which faulty
components of the system are causing the abnormality. A diagnostic expert system
may take a sequence of measurements of system variables to determine the faulty
components, a process called sequential diagnosis. For this purpose, the expert has to
maintain a knowledge base describing the behavior of the system so that measure-
ments could be proposed and faults found by checking the measurement outcomes
against it. Reasoning with a given knowledge base is not easy, in general; however it
can be compiled into a tractable form, which can be used during the diagnosis pro-
cess instead of the original knowledge base. As an example, the expert may compute
a set of explanations (diagnoses) against a faulty behavior from the knowledge base,
and keep narrowing it down by throwing away those explanations that contradict the
measurement outcomes. When the expert is left with a single explanation, the actual

diagnosis of the faulty behavior is found.

The challenges facing a computer-based expert include the following: First, the
size of compiled forms of knowledge bases can often grow exponentially with system
size, making the diagnosis of large systems difficult or even impossible. For example,
a set of explanations may be too large to maintain by a computer even for a medium
size system. Second, often there is trade-off between the size of the compilation and
the efficiency of fault inference. Therefore, it is desired that the compilation be as
compact as possible while still allowing a reasonably efficient fault inference. Third,
it is desired to reduce the diagnostic cost, defined here as the number of measurements
required before the faults are found. In this thesis we address the above mentioned

challenges.

2 Introduction

D440 Q

BUFFER NOT XOR

Figure 1.1: Some of the types of gates used in examples.

—0kX v —A v =-C
{>°C D__Q —okXvAvC

—-0kY vBv-D
—-0kY vCv-D
—-0kYv—-Bv-CvD

>

Figure 1.2: A circuit and its CNF encoding.

1.1 Background

In this section we establish the background necessary to understand our contribu-
tions. We mostly use combinational circuits for the purpose of giving examples. Some

of the combinational gates used in our examples are given in Figure 1.1.

1.1.1 Model Based Diagnosis

In model-based diagnosis, the functionality of the system is described by a knowledge
base, called the model of the system. Consider the example of a combinational circuit
in Figure 1.2, reproduced from [Huang and Darwiche 2005], modeled as a proposi-
tional formula where each signal of the circuit translates into a propositional vari-
able (A,B,C,D). For each gate an extra variable (okX, okY) is introduced to model
its health. The propositional formula is such that when all health variables are true,
the remaining variables are constrained to model the functionality of the gates. For
instance, the first two clauses shown in the figure are equivalent to the sentence
0kX — (A & —CJ, modeling the health of the inverter X.

Given a (typically abnormal) valuation of the inputs and outputs of the circuit,
called an observation, a consistency-based diagnosis is then a valuation of the health vari-
ables that is consistent with the observation and system model. For instance, given
the observation ~A AB A —D, one diagnosis is ~0kX A okY, meaning that the inverter
X is broken and the and-gate Y is healthy, or in short the set {~okX}, where the health

variables not appearing in the set are considered positive. In general the number of

1.1 Background 3

diagnoses can be exponential in the number of system components.

Although propositional theories can be very compact, reasoning with them is gen-
erally computationally intractable. For example, it is generally not easy to compute
the set of all diagnoses from a CNF (Conjunctive Normal Form) model of a system. In
the following, we discuss the notion of compilation that can provide a solution to this

problem.

1.1.2 Diagnosis by Compilation

To deal with the computational intractability of reasoning with general propositional
theories, in principle, system models can be compiled into a tractable language, which
supports efficient algorithms for a set of reasoning tasks according to the nature of
that representation [Darwiche and Marquis 2002]. The idea is to split the reasoning
into two phases: an offline phase which does the hard work of compilation, and an
on-line phase which answers the queries regarding reasoning using the compilation
instead of the original theory.

Here, we first discuss a historical approach followed by a recent structure-based

approach to compilation.

1.1.2.1 Reiter’s Approach

The set of all diagnoses normally contains many unlikely diagnoses, for example a
diagnosis which declares all the components as faulty. Historically, a parsimonious
approach has been used to filter out a preferred set of diagnoses. Particularly, Re-
iter is interested in only the minimal sets of failing components called minimal diag-
noses [Reiter 1987]. A diagnosis is minimal if no proper subset of it is a valid diagnosis.
The interesting property of minimal diagnoses is that, when the system is modeled as
describing only the healthy behavior of components (as in our example), the set of
minimal diagnoses characterizes the set of all diagnoses as every superset of a min-
imal diagnosis is also a diagnosis. When the system description contains the faulty
behavior of components, called fault models [Struss and Dressler 1989], the set of min-
imal diagnoses fails to characterize all diagnoses, in which case a more general set of
kernel diagnoses is computed based on a similar idea [de Kleer et al. 1992].

However, computing the set of minimal/kernel diagnoses is not easy. To com-
pute minimal diagnoses, first a set of minimal conflicts of the system are computed,

where a minimal conflict is a minimal set of components such that not all of them

i | Introduction

can be functioning correctly under the given observation. Formally, a minimal con-
flict is a disjunction (clause) « of a minimal set of negated health variables, which
if all be set to true, conflict with the observation and the model. Minimal con-
flicts are normally computed using an Assumption Based Truth Maintenance System
(ATMS) [Forbus and de Kleer 1993]. A minimal diagnosis corresponds to the conjunc-
tion of a minimal set of negated health variables that, if conjoined with the minimal
conflicts, satisfies (i.e. sets to true) every clause. The common method of computing
the minimal diagnoses is to compute minimal /itting sets [Lin and Jiang 2003] of the
minimal conflicts, where a hitting set is a set that intersects with every clause in the
minimal conflicts. A hitting set is minimal if no proper subset of it is a hitting set.
Minimal conflicts are a special compilation language, which suffers from the dis-
advantage that can make it practically infeasible. Specifically, the number of minimal
conflicts tends to be exponential in the number of system variables in the worst case.
In our experience with the GDE system, for example (see Section 3.4.1), diagnosis us-

ing this approach often ran out of space except on very small systems.

1.1.2.2 Diagnosis by Structure-based Compilation

Fortunately, system models can be compiled into a tractable propositional language
such as DNNF, which not only represents the functionality of a system compactly,
thanks to exploitation of system structure, but also allows common diagnostic tasks
to be performed efficiently [Darwiche 2001; Darwiche and Marquis 2002]. For exam-
ple, once a system is compiled into DNNF, consistency-based diagnoses, as well as
minimum-cardinality diagnoses, can be computed in time polynomial in the size of the
DNNF [Darwiche 2001]. A minimal diagnosis is of minimum-cardinality if it contains
the smallest number of faults.

DNNF can give significant advantage over minimal conflicts as it can often be very
compact even though the number of minimal conflicts is too large. This is due to the
fact that the size of the DNNF is worst case exponential only in the treewidth of the sys-
tem structure, which is often much smaller than the number of system components.
Also, contrary to minimal conflicts, structure can be exploited during compilation to
make the process more efficient. Specifically, the compilation is driven by an efficient
structural decomposition of the system model.

However, we note that despite the scalability of DNNF-based diagnosis approach,
when it is applied to large systems, compilation of system models into DNNF can

become a bottleneck due to large numbers of health variables.

§1.1 Background 5

1.1.3 Sequential Diagnosis

We now turn to the problem of finding the actual set of faults in a system. Sequen-
tial diagnosis takes a sequence of measurements of system variables, and checks them
against the knowledge base of system’s behavior until the actual faults can be in-
ferred [de Kleer and Williams 1987]. In the above example, suppose that the knowl-
edge base consists of a set of minimum-cardinality diagnoses of the system: {~okX],
{(—okY}. Suppose that C is measured to be false, which means that X must be faulty,
then the diagnosis {—okY} can be safely removed. The goal in sequential diagnosis
is to reduce the diagnostic cost. As in [de Kleer and Williams 1987], we assume that
each measurement has a constant cost of 1 and define diagnostic cost as the number of
measurements.

An optimal solution to sequential diagnosis would be a policy, that is, a plan of
measurements conditioned on previous measurement outcomes, where each path
in the plan leads to a diagnosis of the system [Heckerman et al. 1995]. Since com-
puting an optimal policy is intractable in general, traditionally, heuristic methods
are employed to propose good measurement points, which try to approximate the
optimal policy. For this purpose, a probabilistic model of system can be used to
guide the heuristic where probabilities are associated with system variables and/or
diagnoses. For example, GDE (general diagnosis engine) computes the Shannon’s
entropy of the probability distribution over the set of all diagnoses, represented
somewhat compactly by the set of minimal diagnoses [de Kleer and Williams 1987;
de Kleer et al. 1992; de Kleer 2006]. Entropy is a concept from information theory,
which reflects the uncertainty over the probability distribution [Pearl 1979]. GDE tries
to minimize this uncertainty by proposing to measure a variable which causes the
highest reduction in entropy of diagnoses on average. This approach generally has
good performance in terms of diagnostic cost, but can fail to diagnose large systems

when the set of minimal diagnoses is too large.

1.1.4 Most Probable Explanations

Finally, we discuss a common query in diagnostic reasoning using Bayesian net-
works [Pearl 1988] known as most probable explanation (MPE). A Bayesian network is
used to represent joint probability distribution over the variables of a system com-
pactly, and is a commonly used technique in many applications that use probabilistic

reasoning.

6 Introduction

In Bayesian networks, an MPE is a most likely instantiation of all network vari-
ables given a piece of evidence. Solving (the decision version of) an MPE query is NP-
hard [Shimony 1994]. Exact algorithms for MPE based on inference include variable
elimination, jointree, and, more recently, compilation [Chavira and Darwiche 2005].
While variable elimination and jointree algorithms have a complexity exponential
in the treewidth of the network and are hence impractical for networks of large
treewidth, compilation is known to exploit local structure so that treewidth is no longer
necessarily a limiting factor [Chavira and Darwiche 2005].

When networks continue to grow in size and complexity, however, all these meth-
ods can fail, particularly by running out of memory, and one resorts instead to search
algorithms. Most recently, Choi et al. [2007] proposed a branch-and-bound search
framework for finding exact MPE solutions where bounds are computed by solving
MPE queries on a relaxed network. The latter is obtained by splitting nodes of the net-
work in such a way that (i) its treewidth decreases, making the MPE easier to solve,
and (ii) the MPE probability of the relaxed network is no less than that of the original.

However, search time can be exponential in the number of split variables, in the
worst case, and is sensitive to the order in which variables are chosen and assigned

values.

1.2 Contributions of This Thesis

We now summarize the contributions of this thesis.

1.2.1 Structural Abstraction and Hierarchical Diagnosis

The solution we propose to the problem of diagnosing larger system is based on hier-
archical diagnosis. We start with an abstraction of the system where certain regions of
the circuit, called cones, are “carved out” based on a structural analysis. The abstract
model, being generally much simpler, allows larger systems to be compiled and their
diagnoses computed. The cones are diagnosed only when they are identified by the
top-level diagnosis as possibly faulty. We discuss the intricacies involved in prop-
erly diagnosing the cones so that redundancy is avoided and results combined from
the hierarchical diagnosis sessions are sound and complete with respect to minimum-

cardinality diagnoses.

§1.2 Contributions of This Thesis 7

1.2.2 Heuristic for Sequential Diagnosis

For sequential diagnosis, we propose a new heuristic that does not require computing
the entropy of diagnoses and scales to much larger systems. Instead we consider the
entropies of the system variables to be measured as well as the posterior probabilities
of component failures. The idea is to select a component that has the highest posterior
probability of failure [Heckerman et al. 1995] and from the variables of that compo-
nent, measure the one that has the highest entropy. To compute probabilities, we ex-
ploit system structure so that a joint probability distribution over the faults and system
variables is represented compactly as a Bayesian network, which is then compiled into
deterministic DNNF (d-DNNF) [Darwiche 2001; Darwiche and Marquis 2002]. All the
required posterior probabilities can be exactly computed by evaluating and differen-
tiating the d-DNNF in time linear in the d-DNNF size [Darwiche 2003]. Our heuristic
remains effective in hierarchical settings allowing it to be combined with abstraction,

resulting in hierarchical sequential diagnosis which scales to larger benchmarks.

1.2.3 Reducing Abstraction Size with Cloning

When the abstraction of a system is still too large to be compiled and diagnosed, we
use a novel structure based technique called cloning, which systematically modifies
the structure of a given system C to obtain a new system C’ that has a smaller ab-
straction and whose diagnoses form a superset of those of the original system; the
new system can then be diagnosed and the result mapped back to the original sys-
tem. The idea is to select a system component G that is not part of a cone and hence
cannot be abstracted away in hierarchical diagnosis, create one or more clones of G,
and distribute G’s parents (from a graph point of view) among the clones, in such a
way that G and its clones now become parts of cones and disappear from the abstrac-
tion. Repeated applications of this operation can allow an otherwise unmanageable
system to have a small enough abstraction for diagnosis to succeed. This approach
allows measurement points to be computed and diagnosis performed on the largest
benchmarks. We note here that this technique is different from that of node splitting
described in [Pipatsrisawat and Darwiche 2007; Choi et al. 2007], and will discuss the

difference further in Section 4.2.

8 Introduction

1.2.4 Variable and Value Ordering for MPE Search

Finally, we study the impact of variable and value ordering on the efficiency of branch-
and-bound search for MPE. Specifically, we study heuristics based on the entropies of
variables and on the notion of n10goods. The idea is to start the search with a high prob-
ability solution computed from the entropies of variables, and then use dynamically
computed scores for variables to favor nogood assignments, which tend to cause early
backtracking. Compared with the “neutral” heuristic used in [Choi et al. 2007], we
show that our new heuristics further improve efficiency significantly, extending the

reach of exact algorithms to networks that cannot be solved by other known methods.

1.3 Thesis Structure

The thesis is structured as follows: The relevant background and previous work are
discussed in each individual chapter. Abstraction is described in detail in Chapter 2,
where a new hierarchical algorithm for computing minimum-cardinality diagnoses is
also presented. In Chapter 3, we discuss the probabilistic modeling of the systems
required for sequential diagnosis and also present the new heuristic for computing
measurement points. We apply the hierarchical approach and cloning to sequential
diagnosis in Chapter 4. Computation of MPE is described in Chapter 5. Chapter 6
differentiates our techniques from related work. We draw conclusions and propose
future work in Chapter 7.

From here on, we shall use combinational circuits as a concrete example of the
type of systems we wish to diagnose, except for MPE where we consider Bayesian

networks. The techniques, however, are not limited to circuits.

Chapter 2

Hierarchical Diagnosis

This chapter is based upon work published in [Siddiqi and Huang 2007]. Here we for-
malize the notion of abstraction and present a new hierarchical algorithm for comput-
ing the set of minimum-cardinality diagnoses of an abnormal system. It is structured
as follows: In Section 2.1 we review the history of relevant diagnosis approaches and
formally define the problem of diagnosis, whereas a recent structure-based method
that forms the basis of our algorithm is given in Section 2.2. Abstraction is formally
defined in Section 2.3, followed by a detailed description of the new hierarchical algo-
rithm in Section 2.4, where we also give analytical proof of the soundness and com-
pleteness of the new algorithm (Section 2.4.6). We give empirical results showing that
the new algorithm significantly enhances the scalability and efficiency of the existing

approach in Section 2.5, and then draw conclusions in Section 2.6.

2.1 Model-based Diagnosis

Reiter developed a general theory of diagnosis [Reiter 1987], which maintains a model
(description) of the system to be diagnosed consisting of first order formulas that rep-
resent the behavior and the connections between various components of the system.

A consistency-based diagnosis of the system is then defined as:

Definition 2.1.1 (Consistency-based Diagnosis)

A system to be diagnosed is defined by a set of components C, a system description
A (a propositional formula describing the system), and a set of observations {3 (a set
of propositions). A consistency-based diagnosis for (A, C,) is defined to be a set
D C Csuch thatA U B U {okC|C € C\D} U {—0okC|C € D} is consistent, where
okC is a binary variable indicating the health of a component C. A diagnosis may also
be represented as the set { ~okC|C € D} of negated health variables indicating faulty

components, where the components whose health variables do not appear in the set

9

10 Hierarchical Diagnosis

—0kX v -A v -C
A {>°c y M2 —0kX v AvC
B —-0kY v Bv-D

-0okY v Cv-D

—okY v—-Bv—-CvD

Figure 2.1: A circuit and its CNF encoding.

o

Figure 2.2: Cascaded inverters.

are assumed healthy.

For example, in Figure 2.1 the circuit description is a propositional theory describ-
ing the normal behavior of the system.

We denote the set of all health variables as H. Where convenient, we shall also use
the variables H to refer to components themselves.

In general, the number of consistency-based diagnoses can be exponential in the
number of system components. However, Reiter is interested in a characterization of

the set of all diagnoses which includes only the minimal sets of failing components.

Definition 2.1.2 (Minimal Diagnosis)
A consistency-based diagnosis D of (A, C,) is a minimal diagnosis iff no proper

subset of D is a valid diagnosis.

For example, given the abnormal observation ~A /A B A —D for the circuit in
Figure 2.1, there are three possible diagnoses d; = {—okX},d = {—okY},d; =
{—okX, —~okY}, out of which d; and d, are minimal diagnoses.

When the system model A describes only the normal behavior of components,
the minimal diagnoses characterize the set of all diagnoses of the system, as ev-
ery superset of a minimal diagnosis is also a diagnosis. For example, in Figure 2.1,
the system model only describes the correct behavior of the components and as-

sumes an arbitrary behavior when they are faulty, and the diagnosis ds is the su-

§2.1 Model-based Diagnosis 1

perset of both dy and da. A fault model is a faulty behavior of a system compo-
nent [Struss and Dressler 1989]. When fault models are introduced into the system
behavior minimal diagnoses fail to characterize the set of all diagnoses as some su-
perset of a minimal diagnosis may not be a diagnosis anymore. For example, the
circuit in Figure 2.2 contains two cascaded inverters X and Y, which has the same
three diagnoses dj, d, and ds (given above) if no fault models are assumed. However,
if we assume that an inverter outputs the same value as that of its input when it fails
then d3 can no longer be a diagnosis, because if both of them are assumed faulty then
the output of the circuit will not be abnormal. The minimal diagnoses in this case are
d; and d» but do not characterize the set of all diagnoses, as their superset d3 is not a

diagnosis.

To remove the above mentioned drawback with the minimal diagnoses the
set of all diagnoses are characterized by a more general set of kernel diag-
noses [de Kleer et al. 1992], which are based upon the idea of partial diagnoses. A
partial diagnosis is formally represented as a conjunction of health literals and not
as a set of failing components. Suppose that we are dealing with two diagnoses
—0kX A —okY A —okZ and —okX A —okY A okZ, then we are certain that both X and
Y are faulty, while we are not certain about the health of Z. Hence ~okX A —okY is a
partial diagnosis. A partial diagnosis is minimal if no proper subset of it is a partial
diagnosis. The minimal partial diagnoses are called the kernel diagnoses. Kernel diag-
noses characterize the set of all diagnoses as follows: Let y (a conjunction of health
literals) be a kernel diagnosis, then y has the property that if okC does not appear in
v then both vy A okC and y A —okC are diagnoses, for any okC € H. In the absence of
fault models the kernel diagnoses precisely correspond to the minimal diagnoses. In
our example, there are two kernel diagnoses: ~okX /A okY, okX/A—okY corresponding
to dq, ds.

Reasoning with propositional theories is intractable in general, e.g. it is generally
hard to compute the set of minimal/kernel diagnoses from a propositional model. In
principle, system models can be compiled into a tractable language, which supports
efficient algorithms for a set of reasoning tasks according to the nature of that repre-
sentation. The idea is to split the reasoning into two phases: an offline phase that does
the hard work of compilation, and an on-line phase that answers the queries regarding
reasoning using that compilation instead of the original theory. As an example, the
system model can be compiled into a language called minimal conflicts [de Kleer 1976]

from where the minimal/kernel diagnoses can be computed, which is explained as

12 Hierarchical Diagnosis

follows.

Definition 2.1.3 (Implicate)
A clause (disjunction of literals) o is an implicate of a propositional theory /AN AN = (B

An implicate is prime if no proper subset of it is an implicate of A.

Definition 2.1.4 (Implicant)
A term (conjunction of literals) p is an implicant of a propositional theory A iff 3 = A

An implicant is prime if no proper subset of it is an implicant of A.

Definition 2.1.5 (Conflict)

An ok-literal is either okC or ~okC for some C € C. An ok-clause is a disjunction of
ok-literals containing no complementary pair of ok-literals. A conflict of (A, C,)
is an ok-clause entailed by A U . Thus a conflict is an implicate of AU 3. A negative
conflict is a conflict all of whose literals are negative. A conflict is minimal if no proper

subset of it is a conflict.

A conflict asserts that the set of health variables appearing in it cannot be assigned
values such that the disjunction evaluates to false, as such an assignment would con-
flict with the model and the observation. Hence, a negative conflict asserts that not
all components whose health variables appear in the conflict may be functioning cor-
rectly.

Minimal as well as kernel diagnoses can be defined from minimal conflicts as fol-

lows:
Definition 2.1.6 (Minimal Diagnoses)

The minimal diagnoses of (A, C,) are all the prime implicants of the set of negative
conflicts of (A, C,).

Definition 2.1.7 (Kernel Diagnoses)
The kernel diagnoses of (A, C, 3) are all the prime implicants of the set of conflicts of
(A, C, B).

Note that in the case of minimal diagnoses only negative conflicts are considered
whereas in the case of kernel diagnoses the condition of negativity is relaxed.
The common method of computing prime implicants of a theory A is to compute

minimal hitting sets [Lin and Jiang 2003] of the minimal conflicts of A.

Definition 2.1.8 (Hitting Set)
A hitting set of a collection of sets S is a set T that intersects with every set in the

collection S. A hitting set is minimal if no proper subset of it is a hitting set.

2.2 Diagnosis by Structure-based Compilation 13

Every such minimal hitting set corresponds to a prime implicant of the (minimal
conflicts) of A.

The number of minimal conflicts of a theory tends to be exponential in the num-
ber of system variables in the worst case, which can make it practically infeasible to
compute them. We will demonstrate with experiments, later in Section 3.4, that com-
puting minimal diagnoses can be infeasible even for simple diagnosis problems. The
main disadvantage of them is that the structure of the system cannot be exploited in
computing them or in representing them compactly.

Before we go into the structure based approach towards diagnosis, we are also in-

terested in another characterization of diagnoses called minimum-cardinality diagnoses.

Definition 2.1.9 (Minimum-Cardinality Diagnoses)
The cardinality of a diagnosis is the number of failing components mentioned in it. A
diagnosis vy of (A, C,) is a minimum-cardinality diagnosis if no other diagnosis of

(A, C, B) exists whose cardinality is less than that of y.

In our example, dy and d; are also minimum-cardinality diagnoses. In general, the
number of minimum-cardinality diagnoses of a system can also be exponential in the

number of system components.

2.2 Diagnosis by Structure-based Compilation

We now turn to the diagnosis approach that exploits system structure to often avoid
the exponential blowup of space caused by computing a set of minimal or kernel di-
agnoses. Thanks to recent developments, system behavior can be compiled into a
tractable form, such as decomposable negation normal form (DNNF), which exploits sys-
tem structure to compactly represent the functionality of the system, and supports
efficient computation of common diagnostic queries. DNNF is a graph-based repre-
sentation for propositional theories. Specifically, each DNNF theory is a DAG (di-
rected acyclic graph) with a single root where all leaves are labeled with literals and
all other nodes are labeled with either AND or OR; in addition the decomposability
property must be satisfied: children of any AND-node must not share variables.
Once a system is compiled into DNNF, consistency-based diagnoses, as well as
minimum-cardinality diagnoses, can be computed in time polynomial in the size of
the DNNF [Darwiche 2001]. The key is that decomposability allows nonobservables

to be projected out in linear time, and allows diagnoses computed for children to be

il Hierarchical Diagnosis

—0kX —0kY

Figure 2.3: DNNF compilation of the circuit in Figure 2.1.

Algorithm 2.2.1 DNNF : Compiles a CNF to DNNF

function DNNF (t,)
inputs: {t: node in decomposition tree}, {« : instantiation }
local variables: {y: DNNF}, {p : instantiation}, {ti, t; : node in decomposition tree }
1: if t is a leaf node and A(t) = {¢] then

2 Y — dla

3: else !
Y — Vl’- dnnf(t;, A B) A dnnf(t,,« A B) A B, where ranges over all instantiations of
atoms(t;) N atoms(t,) — atoms(x)
5: end if

return y

55

combined at a parent AND-node simply by cross-concatenation (note that diagnoses
computed for children can naturally be unioned at a parent OR-node).

In this section, we review this approach in more detail as presented
in [Darwiche 2001; Huang and Darwiche 2005]. We explain the technique with the
help of the example circuit in Figure 2.1, whose CNF encoding is described in Sec-
tion 1.1.1 and whose DNNF compilation is shown in Figure 2.3. This example is re-

produced from [Huang and Darwiche 2005].

2.2.1 Structure-based Compilation

Given a propositional model of a system, one challenge in computing the set of
diagnoses is to project the model over health variables. Projection in propositional
theories is generally not easy due to the fact that the variable being projected out may
be shared between the conjuncts of a conjunction. However, it becomes easy if the
decomposability property holds for every conjunct in the theory. Decomposability
can be obtained by performing case analysis on the variables shared between the con-

juncts, which is the basis of DNNF compilation. Here we explain this process and

2.2 Diagnosis by Structure-based Compilation 15

show how system structure can be exploited to do it efficiently. The given algorithms
and definitions are the same as in [Darwiche 2001].

The compilation process requires the propositional theory to be in Conjunctive Nor-
mal Form (CNF). A theory in CNF is a conjunction of clauses, which generally does not
satisfy the decomposability property. Each individual clause in a CNF, however, is a
DNNF. Let atoms(A) be the set of variables over which a propositional theory A is
defined. If {3 is an instantiation of some variables in atoms(A), let A[3 be a simplified
version of A after it is restricted to 3. The following theorem provides the basis for

compilation.

Theorem 2.2.1

Let Ay and A, be two DNNFs and X = atoms(A1) N atoms(A;). Let A be a sentence
of the form V/(A1|B) A (A2|p) A B, where {3 is an instantiation of variables X. Then A
is a DNNF and is equivalent to Ay A\ Aj.

Based upon the above theorem, the following algorithm converts a CNF A to a
DNNE

(1) If A contains a single clause «, then DNNF(A) « o.

(2) Otherwise, DNNF(A) « V‘3DNNF(A]\|3)/\DNNF(A;\[3] A B, where A; and A;
are two partitions of clauses in A and { is an instantiation of atoms shared between
Aq and A».

The size of the resulting DNNF can, however, be large and is sensitive to how
the partitioning of the CNF is performed. A good partitioning may lead to a smaller
DNNE. This is the point where the structure of the problem is exploited to get a good
partitioning. Specifically, a decomposition tree of the CNF is constructed and its width is

used to measure the quality of the decomposition.

Definition 2.2.1 (Decomposition Tree)

A decomposition tree T for a CNF A is a binary tree whose leaves correspond to the
clauses in A. If t is the leaf node in T corresponding to clause x in A, then A(t) = {«].
For every internal node t: t; and t, denote the left and right children of t, respectively,
and A(t) = A(t)) U A(t,). atoms(t) is defined to be the set of atoms (variables) ap-
pearing in clauses A(t). atoms' (t) is defined to be the set of atoms associated with

leaf nodes that are not in the subtree rooted at t.

For example, Figure 2.4 shows a decomposition tree for the CNF theory in Fig-
ure 2.1, where atoms(tz) = {okX, A, C} and atoms!(t,) = {okY,B, C,D].

16 Hierarchical Diagnosis

-okX v -Av-C -okXvAvC -okYv-Bv-CvD

-okY vB v -D -okY vCv-D

Figure 2.4: A decomposition tree for the CNF in Figure 2.1.

The decomposition tree provides the measure of the complexity of CNF to DNNF

compilation as follows:

Definition 2.2.2 (Width of a Decomposition Tree)

Let t be a node in a decomposition tree T. The cluster of node t is defined as follows:
if t is a leaf node, then its cluster is atoms(t); if t is an internal node, then its cluster
is (atoms(t) N atoms' (t)) U (atoms(t;) N atoms(t,)). The width of a decomposition

tree is the size of its maximal cluster minus one.

The complexity of CNF to DNNF compilation may be exponential only in the
width of the decomposition tree. If a good decomposition tree can be obtained, then
its width is often much smaller than the number of system components and can pro-
vide us with the advantage over computing the set of minimal or kernel diagnoses
that may be exponential in the number of system components. Efficient decomposi-
tion trees can be constructed by two graph-based techniques, one using an elimination
order of variables in the network graph [Darwiche 2001], and the other using the hy-
pergraph partitioning of the network [Darwiche and Hopkins 2001].

Algorithm 2.2.1 is a basic algorithm to compile a CNF to DNNF by taking into ac-
count a decomposition tree of the CNF. This algorithm can be improved with compu-
tation reuse by cashing the results of the DNNF at each node. Specifically, if two instan-
tiations acand o generated during case analysis agree on atoms(t), then dnnf(A(t)|o)
is equivalent to dnnf(A(t)|e’). The compilation process has been made much more ef-
ficient thanks to the use of further advanced techniques described in [Darwiche 2004],

which we omit.

2.2 Diagnosis by Structure-based Compilation 17

—-0kX -0kY

Figure 2.5: Simplified DNNF after restricting the DNNF in Figure 2.3 to ~A A B A —D and
projecting out C.

Once a DNNF compilation of the system model has been obtained, the set of
minimum-cardinality diagnoses of the system can be computed by performing a se-
ries of linear time operations on the DNNF, which first restrict the DNNF to the given
observation, followed by projecting it over health variables, followed by minimization

and then enumeration of diagnoses, explained as follows.

2.2.2 Restricting the Compilation to the Given Observation

First of all, the DNNF is pruned of all those assignments to variables that are incon-
sistent with the observation by the following linear time procedure, which restricts the
DNNF according to the given observation.

(i) Assign Boolean constants (true = 1 or false = 0) to all the variables in the
observation according to the observation. (ii) Evaluate the DNNF bottom-up as a
Boolean function. (iii) Traverse the DNNF such that parents of a node are visited
before the node, during which every true child of every and-node and every false
child of every or-node are removed. (iv) Finally, for every node N if N has a single
child, collapse N with the the only child of N.

Note that restricting the DNNF to the observation removes all those variables that

appear in the observation.

2.2.3 Projecting the Compilation over Health Variables

The DNNF may still contain variables other than health variables whose values are
not determined by the observation, which include the non-observables. Thanks to the
decomposability property, projection can be done in linear time by replacing every
literal of the variables being projected out with true and then simplifying the DNNF
as described in steps (ii), (iii) and (iv) in Section 2.2.2. Figure 2.5 shows the simpli-
fied DNNF obtained by restricting to observation and projecting out the variable C in
DNNF shown in Figure 2.3.

18 Hierarchical Diagnosis

/+

1

0 0
—-0kX okX okY -0kY

Figure 2.6: Smoothed version of the DNNF in Figure 2.5 and computing minimum cardinality

Once the DNNF has been projected over health variables, the set of all minimum-
cardinality diagnoses can be computed by first performing a linear time minimiza-
tion operation on it, which prunes away all the diagnoses that are not of minimum-
cardinality, and then enumerating the remaining diagnoses. However, minimization

requires the DNNF to be smoothed first.

2.24 Smoothing

A smooth DNNF (s-DNNF) is a subset of DNNF with the property that children of
every or-node be defined over the same set of variables. For example, the DNNF
in Figure 2.5 is not smooth, as the left child of the only or-node is defined over the
variable {okX] and is missing the variable okY. Similarly, the the right child is defined
over the variable {okY] and is missing the variable okX. Smoothing can be done by
a linear time procedure that adds the terms of type okZ \VV —~okZ to every child of an
or-node that is missing variable okZ. The DNNF in Figure 2.6 shows the smoothed
version of DNNF in Figure 2.5.

2.2.5 Minimization

Once smoothed the DNNF can now be minimized. For this purpose, first the
minimum-cardinality mc(N) for each node N of the DNNF is computed by follow-
ing linear time procedure: (i) Traverse the graph so that children of a node are visited
before the node and: (a) for every leaf node N, set me(N) = 1 if N represents a nega-
tive literal otherwise set mc(N) = 0, (b) for every or-node N, set mc(N) to the smallest
of the mc s of its children, (c) for every and-node N, set mc(N) to the sum of the mc s

of its children. (ii) Now traverse the DNNF so that parents of a node are visited before

2.2 Diagnosis by Structure-based Compilation 9

;
A A

-0kX ok -0kY

Figure 2.7: Representing minimum-cardinality diagnoses with minimized version of the
DNNF in Figure 2.6

the node and remove every child V of every or-node N if mc(V) > mc(N). (iii) Finally,
for every node N if N has a single child, collapse N with the the only child of N.

The DNNF resulting from minimization only contains all the minimum-
cardinality diagnoses. Figure 2.6 shows the computation of minimum-cardinality. The
minimized and simplified DNNF is shown in Figure 2.7, which does not contain the

non-minimum-cardinality diagnosis {—~okX, —okY].
: \ j

2.2.6 Enumerating Diagnoses

In order to enumerate the set of all diagnoses, the DNNF has to be smooth. Minimiza-
tion does not affect the property of smoothness of a DNNF; therefore once minimized,
the set of all minimum-cardinality diagnoses can be enumerated from the DNNF by
the following procedure.

Associate a set diagnoses(N) with very node N, which represents the set of di-
agnoses of the DNNF under N. Then traverse the DNNF nodes such that chil-
dren are visited before parents and: (i) For every leaf node N if it is a positive
literal set diagnoses(N) = ¢, (ii) for every leaf node N if it is a negative literal
set diagnoses(N) = {literal(N)}, (iii) for every and-node N diagnoses(N) is the
cross concatenation of the the diagnoses of its children, (iv) for every or-node N
diagnoses(N) is the union of the diagnoses of its children. The diagnoses of the
root node is the set of diagnoses represented by the DNNFE.

The complexity of enumerating diagnoses of a smooth DNNF is linear in its size
and quadratic in the number of diagnoses, i.e. O(mn), where m is the size of the
DNNF and n = |[diagnoses(DNNF)|? [Darwiche 1998].

This concludes the review of the structure-based diagnosis approach. Despite the

20 Hierarchical Diagnosis

Figure 2.8: A circuit with cones.

scalability of this method, when it is applied to large systems, compilation of system
models into DNNF can become a bottleneck due to large number of health variables.
We address this problem using an abstraction based hierarchical approach described

in the following sections.

2.3 Notation and Definitions

Before moving on to our new hierarchical algorithm we give some notation and def-
initions that will be used in the thesis including the formal definition of our novel

technique of abstraction.

2.3.1 Circuits, Dominators, and Cones

We use C to denote the circuit as well as the set of gates of the circuit including the
inputs (as trivial gates). We identify a gate with its output signal. The set of inputs of
the circuit is denoted Ic and the set of outputs O¢c. For example, Ic = {P, Q, R} and
Oc = {T,U, V] for the circuit in Figure 2.8. We say that a gate Y is a PARENT of a gate
G if G directly fans into Y, and thus G is called a CHILD of Y. We assume that the
outputs of the circuit form the "top’ of the circuit while the inputs form its ‘bottom’.
One may observe that certain regions of this circuit have only limited connectivity
with the rest of the circuit. For example, the dotted box containing gates {A, D, E, H, P|
is a sub-circuit that contributes a single signal (A) to the rest of the circuit. The box
containing gates {D, H, P} is another such example. We refer to such a sub-circuit as a

cone (also known as fan-out free formula [Lu et al. 2003; Lu et al. 2003]), which we now

formally define.

52.3 Notation and Definitions 21

The fan-in region of a gate G € Cis the set of all those gates that have a path passing
through G going to some output gate. The fan-in region of gate A in Figure 2.8, for
example, is {A,B,D,E,H,P,Q}.

Definition 2.3.1 (Dominator)
A gate X in the fan-in region of gate G is dominated by G, and conversely G is

a dominator of X, if any path from gate X to an output of the circuit contains G
[Kirkland and Mercer 1987].

The notion of cone then corresponds precisely to the set of gates dominated by
some gate G, which we denote by Dg. For example, the dotted box mentioned above
corresponds to Dy = {A, D, E, H, P}. From here on, when the meaning is clear, we will

simply use G to refer to the cone rooted at G.

2.3.2 Abstraction of Circuit

A circuit can be abstracted by treating all maximal cones in it as black boxes (a max-
imal cone is one that is either contained in no other cone or contained in exactly one
other cone which is the whole circuit). For example, cone A can be treated as a virtual
gate with two inputs {P, B} and the output A. Similarly, cone A itself can be abstracted
by treating cone D as a virtual gate. An abstraction of a circuit can hence be defined

as the original circuit minus all non-root gates of maximal cones, or more formally:

Definition 2.3.2 (Abstraction of Circuit)

Given a circuit C, let C' = C if C has a single output; otherwise let C' be C augmented
with a dummy gate collecting all outputs of C. The abstraction Ac of circuit C is then
the set of gates X € C such that there is a path from X to the output O of C’ that does

not contain any dominator of X other than X and O.

For example, Ac = {T,U,V,A,B,C}. E € Ac as E cannot reach any output without
passing through A, which is a dominator oft ESImilarly WA NS=SASDIRE! SEIR¥A S a s
its only path to A contains D, which is a dominator of H.

Finally, in this chapter only, we assume weak fault models for gates. Establishing
soundness and completeness of the techniques for stronger fault models is a subject

of our future work.

22 Hierarchical Diagnosis

2.4 Hierarchical Diagnosis Algorithm

We now describe the new hierarchical algorithm to compute all minimum cardinality
diagnoses of an abnormal circuit. The key idea behind the algorithm is to start by
obtaining the abstraction Ac of a circuit C as defined in Section 2.3, and then diagnose
C pretending that only gates in Ac could be faulty. This is the basic technique that
will significantly reduce the number of health variables required in the system model,
allowing us to compile and diagnose larger circuits. Once this top-level diagnosis
session finishes, if a gate appearing in a diagnosis is the root of a cone, which has been
abstracted out, then we attempt to diagnose the cone, in a similar hierarchical fashion.

Two things are worth noting here before we go into details. First, cones are single-
output circuits and hence the diagnosis of cones will always produce diagnoses of
cardinality one. Second, the diagnosis of a cone is not performed simply with a re-
cursive call as one may be tempted to expect. Indeed the later diagnosis sessions are
very distinct from the initial top-level session. The reason has to do with avoiding
redundant computation, which we will discuss later in the section.

Pseudocode of the new hierarchical diagnosis algorithm, which we will refer to
as HDIAG, is given in Algorithm 2.4.3. Note that HDIAG is implemented on top of
HDO05 [Huang and Darwiche 2005] discussed in Section 2.2. Hence the basic method
of DNNF compilation and enumeration of diagnoses remains the same; however, it is

done in a hierarchical fashion by HDIAG .

2.4.1 Step 1 (dominators)

HDIAG starts by identifying the nontrivial dominator gates in the circuit (line 3
of Algorithm 2.4.3) (a trivial dominator is one that dominates only itself). First the
dominators of every gate are obtained. The dominators of a gate are the gate itself
union the intersection of the dominators of its parents [Kirkland and Mercer 1987],
which can be found by a simple breadth-first traversal of the circuit starting from the
outputs. During this process the nontrivial dominators can be identified.

Algorithm 2.4.1 gives a pseudo code of the procedure for identifying dominators,
which traverses the circuit in breadth-first manner. Every gate is associated with an
integer COUNTER, initialized to 0 (line 2), which keeps a count of how many parents
of a gate have been processed at any time. A set of DOMINATORS is associated with
every gate, which initially contiains only the gate itself (line 3), noting that every gate

dominates at least itself. During the breadth-first traversal (lines 5-17), when a gate

2.4 Hierarchical Diagnosis Algorithm 23

Algorithm 2.4.1 FINDDOMINATORS : Finds Dominator Gates in a Circuit
procedure FINDDOMINATORS (C)
inputs: {C: set of gates}
local variables: {Q: set of gates}, {X,Y,Z, G : gate}
1: forall G € C do
2: COUNTER(G) «+ 0
DOMINATORS (G) « {G}
end for
Q «—OuTtruTs(C)
6: while —ISEMPTY (Q) do
X« Por(Q)
8: for all Y € PARENTS(X) do

Bl

9: DOMINATORS(X) <~ DOMINATORS(X) M DOMINATORS(Y)
10: for all Z € CHILDREN(X) do

itilg COUNTER(Z) « COUNTER(Z) + 1

12 if COUNTER(Z) == NUMPARENTS (Z) then

18 Q~—Quiz}

14: end if

15: end for

16: end for

17: end while

X is visited its dominators are computed (line 9), the counter for every child Z of X is
incremented (line 11). When all the parents of a gate have been visited the gate itself
is then queued for processing (lines 11-12).

Once the dominators of every gate have been computed the non-trivial dominators
can be easily identified. Specifically, a gate is a non-trivial dominator if it is mentioned
in the DOMINATORS set of more than one gate.

In our example, the dominator sets for T, U, V, A, B, C are {T}, {U}, {V},{A},{B], i@l
respectively; the dominator set for D is {D, A} and for H is {H, D, A}. It can be easily
seen that the gates T, U, and V are trivial dominators whereas D and A are nontrivial

dominators.

2.4.2 Step 2 (cones and their inputs)

Each nontrivial dominator defines a cone that can be abstracted out. Once the
set of dominators of each gate has been computed, the set of gates Dg dominated
by a dominator (or equivalently the set of gates contained in a cone) G can be eas-
ily computed. The set Dg for a dominator G is the set of all gates X such that
G eDOMINATORS(X), where all such gates D¢ always lie in the fan-in region of G.

Now we identify the inputs of these cones by a depth-first traversal of the circuit.
The inputs I of a cone G can be found by traversing the fan-in region of G so that

if we reach either an input of the circuit or a gate X that does not belong to Dg (or

24 Hierarchical Diagnosis

Algorithm 2.4.2 FINDCONES : Finds Cones and their Inputs

procedure FINDCONES (C)
inputs: {C: set of gates}
local variables: {Q, I¢, Ig: set of gates}, {X, G : gate}
1: Ic « INPUTS(C)

2: forall G € C do

3: if ISDOMINATOR(G) then

4: lc L L[)

5: 0 — {G}

6: while —ISEMPTY (Q) do

% X < Por(Q)

8: if X € Ic || G ZDOMINATORS(X) then
9; Ig « Ig U{X]

10: else

[IbIE Q — QU CHILDREN (X)
12 end if

1182 end while

14: SETINPUTS(G, Ig)

15: end if

16: end for

equivalently a gate X such that G ¢ DOMINATORS(X)), we add it to Ig and backtrack.
FINDCONES (line 3 of Algorithm 2.4.3) implements this procedure whose pseudo code
is given in Algorithm 2.4.2.

For cone D in our example, we traverse the fan-in region of D in the order
D,H,P,B. Gates P and B are added to the inputs of cone D. We backtrack from B
as B & Dp. The inputs of cone D are thus {P, B}.

24.3 Step 3 (top-level diagnosis)

The rest of the algorithm proceeds in two phases. In the first phase we have the (ab-
normal) observation for the whole circuit. We first propagate the values of the inputs
bottom-up, setting the (expected) value of each internal gate of the circuit. These val-
ues are saved for reference later. The observed outputs of the circuit are then set which
may be abnormal. PROPAGATEINPUTS, SAVEVALUES, and SETOBSOUTPUTS on lines
4 and 5 of Algorithm 2.4.3 implement these procedures.

The health of the abstraction of the circuit, Ac, is then diagnosed. This is
achieved by associating a health variable with every gate in Ac. Ac contains all
the dominators of the top-level hierarchy plus all the non-dominators that sit be-
tween those dominators and the outputs Oc of the circuit. TRAVERSE_Ac tra-
verses the top-level hierarchy of the circuit. SINGLEOUTPUT on line 1 of Al-
gorithm 2.4.4 implements the attachment of a dummy gate described in Defini-

tion 2.3.2. TRAVERSE_Ac is implemented so that as soon as it encounters an in-

2.4 Hierarchical Diagnosis Algorithm 25

Algorithm 2.4.3 HDIAG : Hierarchical Diagnosis Algorithm
function HDIAG (C, obs)
inputs: {C: circuit/set of gates}, {obs: set of <gate,bool >}
output: {set of sets of gates (minimum-cardinality diagnoses)}
local variables: {Oc,Ic,S, T : set of gates},{V, D:set of sets of gates}, {Q :<CNF, set of gates>}
1: Oc « OuTtrUTS(C)
: Ic « INPUTS(C)
: FINDDOMINATORS(Oc), FINDCONES(Oc¢)
: PROPAGATEINPUTS (C, Ic, obs), SAVEVALUES (C)
: SETOBSOUTPUTS (Oc, obs)
: T« TRAVERSE_Ac (Oc, Ic), ATTACHOKS(T)
: Q « GENMODEL(C,Oc UIc)
: V«CALLHDO05(Q, obs), ORDERBYDEPTH(V)
9: RESTOREVALUES ()
10: D « ¢
11: forall S € V do
122 D «— D U FINDEQDIAGNOSES(S)
13: end for
14: return D

U1 = WD

® N O

Algorithm 2.4.4 TRAVERSE_A¢ : Traverses Top Level
function TRAVERSE_Ac (Oc¢,I¢)
inputs: {Oc, Ic : set of gates}
output: {set of gates}
local variables: {Q, K, T: set of gates}, {Y, O : gate}
1: O « SINGLEOUTPUT(Oc¢)

2: Q—{0}), T o

3: while ~ISEMPTY (Q) do

4. Y « Por(Q)

5. if Y &€ Ic then

6: T « TU{Y}

7 end if

8: if ~ISDOMINATOR (Y)| Y == O then
9 K «— CHILDREN (Y), Q0 « QUK
10: end if

11: end while

12: return T

put of the circuit or a nontrivial dominator (other than root, see line 7 of Algo-
rithm 2.4.4), it backtracks (the inputs are excluded as they are assumed to be healthy).
ATTACHOKS associates health variables with each gate in this hierarchy.

Now we create an abstract system model similar to the full model described in
Section 2.2. The abstract model contains a system description, in CNF, over the set of
observables (Ic U O¢) and nonobservables (C\(I¢ U Oc)). The model is generated by
the function GENMODEL and returned as Q. Note that only the clauses representing
the gates marked by ATTACHOKS will have additional health variables. For example,
consider the circuit and its CNF encoding in Figure 2.1, if the given circuit was a cone

in a larger circuit, which dominates the gate X, then its clauses in the abstract model

26 Hierarchical Diagnosis

of the circuit would not contain the health variable okX.

HDO5 is then called with Q and the observation to perform the diagnosis. The
diagnoses thus obtained will be referred to as top-level diagnoses. If a nontrivial dom-
inator G € Ac is reported to be possibly faulty, we then enter the second phase by
diagnosing the cone under G.

For example, in Figure 2.8, given the inputs, all the outputs of the circuit should be
1, but, all of them are 0 in our observation. We introduce health variables for the set
of gates Ac\I¢c = (T, U, V, A, B, C}, create a model of the abstraction of the circuit, and
pass the model along with the observation =T A—-UA -V AP A Q AR to HD05. One
of the diagnoses returned by HDO05 is —okA A —okB A —okC or, to use an alternative
notation, {A, B, Cj (in the rest of the chapter we will use this latter notation expressing

a diagnosis as a set of faulty gates). Since A is a cone, we enter the second phase.

2.4.4 Step 4 (diagnosis of cones)

Suppose that B = {X, G1,..., G} is a diagnosis found in the top-level phase and that
X € B is (the root of) a cone. It should be clear that given the faulty output b of X, if
there is a gate Y € Dy that, when assumed faulty, permits the same value b at X, then
replacing X with Y will yield a valid global diagnosis. This way we try to expand our
top-level diagnoses in the procedure FINDEQDIAGNOSES (line 12 of Algorithm 2.4.3),
given in Algorithm 2.4.5.

Mainly, for each cone X in each top-level diagnosis B, we find a diagnosis for X
hierarchically. We identify X as a sub-circuit with the single output X and the inputs
Ix. The minimum cardinality of diagnoses for X is always one as we mentioned earlier.
We then replace X with its singleton diagnoses, in B, one by one, to produce new
global diagnoses. This process is iterated until we reach a base case (no cones left to
be diagnosed). We take care that a cone is not diagnosed multiple times by caching on
the observation on a cone and saving the corresponding diagnoses (lines 10 and 16),
which is explained later in Section 2.4.5.

Cone X could be diagnosed as is done for the whole circuit but there is more to be
done in order to find correct diagnoses. Specifically, we need a set of values for the
inputs and output of cone X as an observation to pass to HDO05. First of all we restore
expected values of the gates in the circuit (line 9 of Algorithm 2.4.3) before we call
FINDEQDIAGNOSES.

We want to diagnose cone X under the assumption that all of the gates

G; € B are also faulty, so we need to propagate the fault effect of all G;

§2.4 Hierarchical Diagnosis Algorithm 27

Algorithm 2.4.5 FINDEQDIAGNOSES : Diagnosis of Cones

function FINDEQDIAGNOSES (B)
inputs: {B, set of gates}
output: {set of sets of gates}
local variables: {E, V: set of sets of gates}, {P,R,C, Ix,Q, T, S: set of gates}, {X,Y: gate}, {Q :<CNE
set of gates>}, {obs: set of <gate,bool>}
1: E « {B)
2: D« {B)
3: while ~ISEMPTY(E) do
4: P — POP(E)

5: for all X € P such that X is a cone and is not the whole circuit do
6: Ix < INPUTS (X)

7 PROPAGATEFAULT (P)

8: obs «— VALUATION({X} U Ix)

9: RESTOREVALUES ()

10: if "ALREADYDIAGNOSED(X, obs) then
1415 C «— TRAVERSECONE (X)

12 T « TRAVERSE_Ac ({X},Ix)
1% ATTACHOKS (T)

14: Q « GENMODEL (C,{X}UIx)
157 V « CALLHDO5 (Q, obs)

16: SAVEDIAGNOSES(X, obs, V)
17: else

18: V « DIAGNOSES(X, obs)

19: end if

20): forall R € V do

211 Y < Por(R)

22: if X #Y then

23: S « SUBSTITUTE (X,Y,P)
24: E— E U{S)

25: D — DU({S}

26: end if

27 end for

28: end for
29: end while
30: return D

into the sub-circuit. Since faults in circuits propagate bottom-up, we put the
set of gates in each diagnosis in decreasing order of their depth in the circuit
(ORDERBYDEPTH on line 8 of Algorithm 2.4.3). A fault is processed simply by flip-
ping the output of the faulty gate and propagating its effect. This is done for each
G € B separately in the order in which they appear in B. This has the desired effect of
setting an observation across cone X (Ix U {X}) that is consistent with the observation

of the overall circuit. Cone X is now ready for diagnosis.

Note that, again, only the abstraction Ax of cone X is diagnosed. As
we mentioned earlier, however, this is not simply a recursive call to Algo-
rithm 2.4.3, but needs to be handled differently (Algorithm 2.4.5). TRAVER-

SECONE (line 11) identifies and returns the set of gates of the cone (i.e., Dx).

28 Hierarchical Diagnosis

VALUATION returns a set of <gate, bool> pairs which represents the currently as-
signed values to the set of gates {X] U Ix passed as input (line 8). The returned set
serves as an observation across the cone. Given the cone, its observables and nonob-
servables, the health of its abstraction is diagnosed using HD05 and the set of sin-
gleton diagnoses V found is saved (line 16). These diagnoses can be retrieved by
DIAGNOSES (line 18). SUBSTITUTE (X, Y, P) generates a new diagnosis by replacing X
with Y in P (line 23). Finally, we return from the function with the expanded set of
diagnoses.

The diagnosis of cones is similar to that of the overall circuit given in Algo-
rithm 2.4.3. There are, however, a few details worth mentioning: (i) Every cone is
diagnosed hierarchically, i.e., for a cone X we diagnose only the top-level hierarchy
Ax of X. (ii) A cone may be subject to diagnosis multiple times; therefore results of
their diagnosis are saved and reused later under certain circumstances (lines 10 and
16), which are discussed later. (iii) Once a new diagnosis is generated by substitution,
it is added to the set E for further processing (line 24 of Algorithm 2.4.5). (iv) The
fault effect of a diagnosis is propagated before the diagnosis is processed, and undone
afterwards (lines 7 and 9). (v) As substitutions are made, the gates in a newly gen-
erated diagnosis may not have the depth order discussed above; however, we do not
re-order them for reasons that will be clear soon.

Continuing with our example, we reorder {A, B, C} as {B,A,C}. We flip B to 0,
propagate the effect that flips E to 0 and D to 1. A remains 1 at this stage; we then
flip A to 0 (gate C is irrelevant to the diagnosis of cone A). Note that the correct
output of cone A should be 1 given its inputs P(1) and B(0). We place health variables
at the gates Ayx\Ip = {A D, Ej, generate a model for cone A, and pass it to HD05
with the observation ~A /A P A =B, which returns three diagnoses of cardinality one:
(A}, {D},{E}. Note that {A} is a trivial diagnosis. Substituting D and E for A in the
top-level diagnosis {B, A, C}, we get two new diagnoses: {B, D, C}, {B, E, Cl.

24.5 Avoiding Redundancy

Since cones can be shared among different diagnoses, a cone is potentially visited
more than once before all final diagnoses are computed. It may or may not be redun-
dant to diagnose one cone multiple times. There are three cases to consider in this

regard but all of them can be handled with a single technique, described below:

(i) Suppose that in a top-level diagnosis, a cone S appears in two diagnoses

{S, T} and {S, U}, shown in Figure 2.9a. It can be seen that neither T nor U

424 Hierarchical Diagnosis Algorithm 29

P

(a) (b) (c)

Figure 2.9: Redundancy scenarios.

lies in the fan-in region of cone S. Thus no fault at T or U can affect values
at the inputs or output of cone S. This means that diagnosis of S can be
obtained once and can be used in the processing of both of the top-level

diagnoses.

(i) In Figure 2.9b, both T and U lie in the fan-in region of the cone §. Thus
faults at T or U can affect values at the inputs and output of cone S. How-
ever, if we consider a fault at T and its effect across S (at the inputs and
output of S), it may not be same as a fault at U and its effect across S. Thus
the diagnosis of cone S during the processing of {S, T} may be completely
different from that during the processing of {S, U}. Hence cone S has to be

diagnosed twice in this case.

(iii) In Figure 2.9¢, we assume that only {S, T} is a top-level diagnosis whereas
(S, U} is a diagnosis obtained during the processing of [S, T} such that {U} is
a cardinality one diagnosis for cone T. Hence the value seen at the output
of T due to a fault at T would be the same as if seen due to a fault at
U. Therefore, the effect of both faults, individually, across S would be the
same and hence S needs to be diagnosed only once for both diagnoses.
This idea extends to any level of substitution when diagnosing cone U
further yields new diagnoses. For this reason we do not reorder the gates
in the newly generated diagnoses (in FINDEQDIAGNOSES) according to

their depth.

The third case can be easily implemented in the FINDEQDIAGNOSES procedure by
making sure that a cone is diagnosed only once and results are cached during a single
call to FINDEQDIAGNOSES, whereas the first and second cases are harder to imple-

ment. However, if we simply maintain a hash of observations on a cone and also save

30 Hierarchical Diagnosis

the corresponding diagnoses, we can easily avoid having to diagnose a cone a second
time if the cone has already been diagnosed with the same observation. Therefore,
before diagnosing a cone (in Algorithm 2.4.5), we check if the cone has already been
diagnosed under the given observation (line 10). If yes we simply retrieve the saved
diagnoses (line 18); otherwise we diagnose the cone and save the results of diagno-
sis (line 16). This kind of hashing provided substantial performance improvement on

cases where the number of minimum-cardinality diagnoses was large.

2.4.6 Soundness and Completeness

If some gates in a circuit are encoded without a health variable, while others are en-
coded with health variables (as in HDIAG), it is assumed that gates with no health
variables cannot be faulty and will not appear in any diagnosis. If such an encod-
ing of a circuit is given to HDO5 for computing minimum cardinality diagnoses, there

could be three outcomes:

(i) The DNNF compilation produces a contradition in the model, i.e., certain
gates without health variables cannot be healthy under the given observa-

tion;

(ii) The reported diagnoses have cardinality greater than that of the diagnoses

of full encoding (when all gates are encoded with a health variable); or

(iii) The reported set of diagnoses is either the same as the set of diagnoses of

the full encoding or is a proper subset of it.

Therefore, it is necessary to establish that every diagnosis found by HDIAG is a
minimum-cardinality diagnosis (soundness) and every minimum-cardinality diagno-
sis is found by HDIAG (completeness). We now give intuition why HDIAG should be
sound and complete and discuss each of the above mentioned three possibilities one

by one.

(i) The abstraction of a circuit excludes all those gates that are (non-trivially)
dominated by another gate, whereas it includes gates that are not domi-
nated by any gate other than themselves. Hence, the abstraction includes
the highest dominators of the circuit, where we say that a dominator is high-
est if it is not being dominated by any other gate. When a set of gates is

dominated by a single dominator, the effect (if any) of a set of faults in

824 Hierarchical Diagnosis Algorithm 31

them does appear at the dominator, as all paths from them to circuit out-
puts pass through it. Thus the dominator will output a value which is
different to what it would output if all its dominated gates were healthy.
Since HDIAG encodes every gate in the abstraction with a health variable,
the fault effects in dominated gates will be represented by the health vari-
ables of their respective dominators and every other health variable rep-
resents the fault of its respective gate, which models the health of every
gate in the circuit. Hence a satisfiable assignment to health variables can
be obtained under an (abnormal) observation and the hierarchical model

never contradicts with it, which removes the first possibility.

(ii) It is also easy to note that the reported diagnoses cannot be of cardinality
greater than that of the diagnoses of full encoding. Since a fault at the
root of a cone represents a set of faults inside the cone and the smallest
cardinality of faults in a cone is 1; therefore, having health variables at
the dominated gates could not have led to a smaller cardinality, which

removes the second possibility.

(iii) It leads us to the conclusion that the diagnoses reported by HDO5 are of
minimum cardinality and that they are subset of the minimum-cardinality
diagnoses of the full encoding. If none of the diagnoses mention the pos-
sibility of a dominator to be faulty, then the reported set of diagnoses are
complete. Otherwise, we note that a cone mentioned in a top-level diagno-
sis represents a set of possible single faults in it. Hence we diagnose such
a cone after getting an observation at its inputs and output to find those
single faults, and generate a set of global minimum-cardinality diagnoses
that are guaranteed to be valid, thanks to the correctly computed observa-
tion for a cone. Doing the same for every cone in every top-level diagnosis
and those generated from them gives us the complete set of minimum-

cardinality diagnoses.

We now formally prove the following theorem, relying on the fact that the baseline

diagnoser HDO5 has the same property.

Theorem 2.4.1

HDIAG is sound and complete with respect to minimum-cardinality diagnoses.

Proof. Let C be the circuit in question.

32 Hierarchical Diagnosis

circuit | gates | cones | health vars | cases cases solved time on common cases
for HDIAG HDIAG | time || HDO5 | time | HDIAG HDO05
c432 | 160 64 5 700 700 0.4 700 | 7.8 0.4 7.8
A998 F2028 B0 58 SOOMEES 00| H024W|| 800N "oz 0.2 0.1
c880 | 383 | 177 7 800 799N B0 A8 786 MU 0.4 0.5
c1355 | 546 | 162 58 800 SO0 (oS =702 RS 0.4 5
c1908 | 880 | 374 160 400 388 |[685| 94 |4883| 401 4883
€2670 | 1193 | 580 167 400 | 392 | 3% 0 n.a n.a n.a

Table 2.1: Comparing HDIAG and HD05 on ISCAS-85 circuits.

Soundness: It should be clear that all diagnoses found by HDIAG are in fact valid.
Moreover, they all have the same cardinality because (1) all top-level diagnoses found
in Step 3 have the same cardinality by virtue of HDO05 and (2) substitutions in Step 4
do not alter the cardinality as cones whose roots are in Ac cannot overlap (i.e., two
gates in a top-level diagnosis cannot be substituted by the same gate in Step 4).

Hence it remains to show that the cardinality of these diagnoses, call it d, is indeed
the smallest possible. Suppose, on the contrary, that there exists a diagnosis S of a
smaller cardinality: [S| < d. Now, let each gate in S be replaced with its highest
dominator in the circuit to produce §’. Clearly, (i) S’ remains a valid diagnosis, (ii)
S' C Ac, and (iii) [S'| < |S|. (i) and (ii) imply that S’ is a diagnosis for the abstraction
Ac. (iii) implies [S'| < d. This means that the top-level diagnoses for Ac found in
Step 3 are not of minimum cardinality, contradicting the soundness of the baseline
diagnoser HDO5.

Completeness: Let S be a diagnosis of minimum cardinality d. Let each gate in S
be replaced with its highest dominator in the circuit to produce S'. Again, we have (i)
and (ii) as above, and moreover |S’| = d. This implies that S’ will be found by HDIAG
in Step 3 by virtue of the completeness of HDO5 in diagnosing Ac. S itself will then
be found by substitutions in Step 4 by virtue of the completeness of the diagnosis of
cones (which can be easily established by induction as all diagnoses for cones are of

cardinality one).]

2.5 Experimental Results

In order to compare the efficiency and scalability of our approach with that of
[Huang and Darwiche 2005], we ran both systems on a set of ISCAS-85 circuits us-
ing randomly generated diagnostic cases. For each circuit, we randomly generated a
set of input/output vectors accordingly to the correct behavior of the circuit. We then

randomly flipped k outputs, with k ranging from 1 to 8, in each input/output vector

$2.6 Conclusions 33

to get an (abnormal) observation (the minimum cardinality of the diagnoses was often
close to the number of flipped outputs), except for ¢432 for which the range is from 1
to 7 as it only has only 7 outputs. Up to the circuit c1355, we generated 100 cases for
each value of k, whereas for the remaining circuits only 50 cases were generated for
each value of k. We observed that flipping more outputs to abnormal values tends to
increase the number of diagnoses as well as the complexity of compilation.

All experiments were conducted, using ISCAS-85 benchmark circuits, on a cluster
of 32 computers consisting of two types of (comparable) CPUs, Intel Core Duo 2.4
GHz and AMD Athlon 64 X2 Dual Core Processor 4600+, both with 4 GB of RAM
running Linux. A time limit of 2 hour and a memory limit of 1.5 GB was imposed on
each test case.

The results are given in Table 2.1. The fourth column shows the number of health
variables used by HDIAG for the top-level diagnosis. Recall that the baseline approach
HDO5 requires a health variable for every gate. It is clear that the proposed technique
significantly reduces the number of health variables required. We also observe that
overall HDIAG was able to solve significantly more number of cases than HDO5 while
also solving those cases that HDO05 can solve. In particular, HDO5 could not solve
any of the cases for c2670 and only solved 94 cases for c1908, whereas HDIAG failed
on only a few cases for these two circuits. In the last two columns of the table, we
compare the running times (in seconds) of the two systems on cases they both solved.
The new approach clearly results in better efficiency.

Finally, we note that both programs reported exactly the same set of diagnoses for

each case they both solved, as we expect given Theorem 2.4.1.

2.6 Conclusions

From the model compilation viewpoint, the first benefit we gain is that we signifi-
cantly reduce the number of health variables needed in the model, allowing the di-
agnosis to scale to larger circuits. As a related benefit, some parts of the circuits may
never be analyzed since a cone is only analyzed if it is part of a diagnosis computed in
the higher level. As a third benefit we can now produce the complete set of minimum-
cardinality diagnoses in a compact form, as a set of top-level diagnoses, each repre-
senting a class of diagnoses that can be obtained by substitutions. Overall, our ap-
proach results in improved efficiency and scalability as demonstrated against a recent

diagnosis tool on ISCAS-85 circuits.

34

Hierarchical Diagnosis

Chapter 3

Adding Probabilities for Sequential

Diagnosis

This chapter is based upon work published in [Siddiqi and Huang 2008]. Here, we
add probabilities to our diagnostic framework and extend the compilation based di-
agnosis approach to sequential diagnosis, and also present a new scalable probabilis-
tic heuristic for proposing measurements. The structure of this chapter is as follows:
In Section 3.1 we discuss the probabilistic framework that underlies our algorithm.
In Section 3.2 we formally define sequential diagnosis and review the previous GDE
approach. In Section 3.3 we give details of the new techniques, and give empirical evi-

dence for their effectiveness in Section 3.4. Finally, we draw conclusions in Section 3.5.

3.1 Probabilistic Framework

In this section we provide knowledge of the probabilistic framework that forms the
basis of our sequential diagnosis algorithms, including joint probability distributions,

Bayesian networks, and computation of probabilities by compilation.

3.1.1 Joint Probability Distributions

Consider a causality diagram between three events S (smoke), T (theft) and A (alarm)
in Figure 3.1, which shows that alarm will be caused by either smoke, or theft, or both
smoke and theft. We say that S and T are parents of A. Suppose that alarm is observed
(A = 1), one may be interested in knowing the likelihood of smoke or theft in order to
take appropriate actions.

A joint probability distribution is a way of assigning likelihood to events. Fig-

ure 3.2 shows a joint probability distribution between S, T and A. The probability

35

36 Adding Probabilities for Sequential Diagnosis

Figure 3.1: A causality diagram between three events S (smoke), T (theft) and A (alarm).

S A S A
i Ra] U] 0.24

[EE 0 0
R0 8] 0.36

T 05340 0
O] 0.16
(RSP () 0

05 {0 = 0

O aE 00 0.24

Figure 3.2: A joint probability distribution between three events S (smoke), T (theft) and A
(alarm).

of A = 1,S§ = 1, for example, can be obtained by summing up all the entries in
the table which are consistent with A = 1 A'S = 1, i.e. entries 1 and 3. Hence
Pr(S = 1,A = 1) = 0.60. Similarly Pr(T = 1,A = 1) = 0.40. The probabilities of
individual events can be computed in the same way, e.g. Pr(S = 1) can be computed

by summing up the first four entries of the table.

Definition 3.1.1 (Joint Probability Distribution)
A joint probability distribution is a function over a set of variables X, mapping each

instantiation x of these variables to a number, denoted as f(x), such that 0 =i = 1
and e £ba) =l

Note that representing a joint probability distribution as a single table requires
space exponential in the number of variables and hence will not be practical for large

systems. A Bayesian network provides the solution to this problem.

93.1 Probabilistic Framework 37

T e
0lo4| |0]o06
Sl B
T e 1
s
AR 1
e
i 1
0 T OeELD
e
g g g 1 A

Figure 3.3: CPTs for nodes S, T, and A. for the Bayesian network in Figure 21

3.1.2 Bayesian Network

A Bayesian network exploits the Markov property regarding the independence amongst
the events to compactly represent the joint probability distribution [Pearl 1988]. Sup-
pose that the node S has a parent X, and suppose that S = 1is already known, then itis
simple to note that the value of A cannot be affected by X, i.e. A becomes independent

of X if S is known. Markov property captures this independence.

Definition 3.1.2 (Bayesian network)

A Bayesian network is a directed acyclic graph (DAG) together with a conditional
probability table (CPT) for every node of the graph, where a node represents a vari-
able and a CPT specifies the conditional probabilities of various instantiations of the

corresponding variable given instantiations of the parent variables.

For example, Figure 3.1 shows a Bayesian network, and Figure 3.3 shows the CPTs
of each of its nodes. The number 6}, in the rightmost column of a row is called a
network parameter and represents the conditional probability of an instantiation of X
given an instantiation of parent variables U. For example, the table at the bottom
of Figure 3.3 gives the conditional probabilities (6 ¢) of instantiations of A given
instantiations of S and T. The two tables at the top are special cases representing

nodes having no parents (root nodes), which show numbers called prior probabilities.

Definition 3.1.3 (Markov Property)
Given an instantiation of its parents, the probability of a network node is independent

of any node which is not in the fan-out of the node.

38 Adding Probabilities for Sequential Diagnosis

Markov property allows us to specify the probabilistic relationship of every vari-
able with its parents only and the joint probabilities over all network variables can be
obtained by realizing that the nodes of the network satisfy this property.

The joint probabilities can be computed from a Bayesian network by the chain rule,
which says that the probability of an instantiation x of all network variables X is sim-

ply the product of all network parameters 6, where xu is consistent with x:

Pfec— TPlie (3.1)

xu-x

For example, the probability Pr(S = 1,T = 1,A = 1) can be obtained by multiply-
ing the first entry in the A’s CPT (1) with the first entry in S’s CPT (0.6) and the first
entry in T's CPT (0.4),ie., 1 x 0.6 x 0.4 = 0.24.

The joint probability distribution encoded in the Bayesian network provides the
basis for computing any posterior probabilities Pr(x|y) (probability of an instantiation
of variable X given an instantiation of variables Y); however, it does not provide an
efficient way of doing so. Computing a posterior probability Pr(x|y) involves the fol-
lowing equation:

Pr(xy)

= — 34
Pr(xly) =t (3.2)

Computing Pr(xy) in turn involves summing out all variables other than X and Y,

which has a complexity exponential in the number of such variables if done naively;

computing Pr(y) is similar.

3.1.3 Computing Posteriors by Compilation

Fortunately, [Darwiche 2002] shows that the CPTs of a Bayesian network can be en-
coded into a CNF formula, and after compiling the formula into deterministic DNNF
(d-DNNF) all posterior probabilities can be computed by traversing the d-DNNF in
linear time. Deterministic DNNF is a subset of DNNF with the property that children
of every or-node are mutually logically inconsistent. In this section, we go through

this technique as presented in [Darwiche 2002; Darwiche 2003].

3.1.3.1 Bayesian Network as Multi-Linear Functions

In order to answer probabilistic queries on a Bayesian network it is viewed as a multi-

linear function having two types of variables (1) for every value x of a variable X in a

§3.1 Probabilistic Framework 39

network, there is a variable A, called evidence indicator, (2) for every instantiation xu
of every variable X and its parents U in the network, there is a variable 0, ,, called ret-
work parameter. The multi-linear function has a term for each instantiation of network
variables obtained by multiplying all evidence indicators and network parameters
that are consistent with that instantiation. For example, for the 3 variable network in
Figure 3.1 there would be 8 terms corresponding to 8 instantiations of S, T and A, as

follows:

T N L] ST
AsAtAaB:0404st +
AsAiAa0s8:0 it +
AsAirNa0s0:04/st +
AshiAa050+0 ot +
AsAiAa0s0:04ps¢ +
AsAiAaB50:0 (st +
AsAiAa03010 o st (3.3)

We can compute any probability given the above multi-linear function. The prob-
ability Pr(e) of a piece of evidence e can be computed by evaluating the multi-linear
function after setting every indicator to 0 if it is inconsistent with e, and to 1 otherwise.
For exampleife = (S =1,A = 1), weset A; = lamm= O =1is = e = 1 e =
in the above equation and evaluate it to get: Pr(e) = 0500 ys¢ + 05010 45t = 0.6 x 0.4 x
1-F06< 0.6 < 1'="0.24"F0.36 — 0.60.

According to differential semantics of inference in a Bayesian network, any poste-
rior probability Pr(x|e) can be computed by first taking a partial derivative of /oA and
then evaluating the result under the evidence e, i.e. by computing 0f/0A«(e], which
gives us the probability Pr(xe). Pr(xe) is then divided by Pr(e) to get Pr(x|e) accord-
ing to equation 3.2. The partial derivative 0f/0A\ can be computed by setting A, to 1

and A4 to 0 and simplifying the resulting equation. For example of /0A; is given as:

40 Adding Probabilities for Sequential Diagnosis

B
e e
i S e
S
g
=N V=Shes N VG
A Ve e,
e

—AtV —Aq

S A e

Figure 3.4: CNF encoding of the Bayesian network in Figure 3.1, which exploits logical con-
straints and context-specific independence.

of/oks =" KeNdBebe0 e +
Atha8s0:84/ct +
AiA 0010 gt +
AiAaB:0:0 45t (34)

3.1.3.2 Converting the Bayesian Network into Arithmetic Circuit

Similar to the joint probability distribution in Figure 3.2, the multi-linear function is
exponential in the number of network variables. However, the function can be repre-
sented compactly as an arithmetic circuit (AC), which also allows partial differentiation
to be computed, simultaneously, for all the variables, under a given evidence, in time
linear in the size of the circuit. For this purpose, the CPTs of the Bayesian network
are encoded as CNF and then compiled to d-DNNF, which can be easily transformed
into an arithmetic circuit (described below). In the following, we allow ourselves the
flexibility to interchangeably use the terms d-DNNF and arithmetic circuit.

We discuss one of the two types of CNF encodings of a CPT given
in [Chavira and Darwiche 2008]. The encoding contains two types of clauses. First,

for each network variable X with values x' x2,...,xX, the encoding A contains the

§3.1 Probabilistic Framework 41

/ \ & \ ‘\‘
L 9{ PR G Sl TR vy bl
036 0.6 024 06 0.6 il 0.6 0 0.16 0

Figure 3.5: Arithmetic circuit obtained from the d-DNNF compilation of the CNF in Figure 3.4
and its evaluation (left) and differentiation (right) under observation e = {A = 1,§ = 1}.

clauses:

Nt Vsl e

—
W
01

=

A V Ay,

—~
@
=)

N

Second, for each network parameter 0., ., . the encoding A contains the
clauses:

T A A A 2/ MRS B ol (3.7)

The propositional theory A containing the above clauses for every CPT encodes
the multi-linear function of the Bayesian network.

The CNF encoding of the Bayesian network can be compiled to d-DNNF. Thanks
to structure exploitation, the d-DNNF is often very compact compared to the size of
the multi-linear function, and may be exponential only in the treewidth of the net-
work. A d-DNNF can be transformed into an arithmetic circuit by first smoothing it
and then replacing each conjunction in d-DNNF by multiplication, and each disjunc-
tion by addition, and each negative literal by 1.

The encoding of the Bayesian network in Figure 3.1 contains 6 indicator variables,
12 network parameters and 38 clauses. However a much more efficient encoding re-
sults if some local structure in the form of logical constraints and context-specific indepen-

dence (CSI) can be exploited, which can further reduce the complexity of compilation.

42 Adding Probabilities for Sequential Diagnosis

CSI can be exploited when two network parameters in a CPT become equal. For
example, 0, and 0 i are equal, which means that given s the conditional probabil-
ity of a is independent of T. In that case, we can just collapse the two parameters to
84 and their corresponding clauses to Aq /A As < 8.

Logical constraints can be exploited when a network parameter is either equal to 0
or 1. Suppose that a network parameter 6,,,, ., is equal to 0, which states that the
assignment A, ANy, A... Ay, should be multiplied by 0. In that case we can simply
generate a single clause that negates that assignment, i.e. “AV Ay, V...V 7Ay, . It
eliminates the variable ,,,, ., and also reduces the number of clauses significantly.
Similarly, if 0., .., is equal to 1, which states that the assignment Ax/AAy /.. AN
should be multiplied by 1, in which case we do not need to generate any clause.

For example, we exploit CSI on the CPT of node A in Figure 3.3: The second and
fourth parameters are merged and their corresponding clauses collapse to As/AAg < 0.
Similarly, second and sixth parameters are merged and their corresponding clauses
collapse to A¢ AAg « 0. The seventh parameter can not be merged with any other and
its clauses are As A A{ A A < 0. We then use logical constraints to generate only three
clauses for A given at the bottom of Figure 3.4.

As a consequence, the CNF encoding of the Bayesian network in Figure 3.1 con-
tains 6 indicator variables and only 4 network parameters and 17 clauses, which is
shown in Figure 3.4. The arithmetic circuit resulting from this encoding is shown in

Figure 3.5.

3.1.3.3 Computing Probability of Evidence

After the compilation, the probability Pr(e) for an instantiation e of any set of vari-
ables E can be obtained by the following linear-time procedure: (i) Set all evidence
indicators E to Boolean constants (1 or 0) according to the instantiation e, (ii) set all
other evidence indicators to 1, (iii) set all network parameters to the corresponding
numbers, (iv) evaluate the d-DNNF bottom-up.

The number at the root will be Pr(e). For example, Figure 3.5 (left) computes the

probability of evidence e = {A = 1,S = 1}, which is equal to 0.6.

3.1.3.4 Computing Posteriors

After the probability of evidence has been computed, all posteriors can be computed
by a single downward traversal on the d-DNNF that performs partial differentiation.

This is done by associating two registers with each node of the d-DNNF, namely ev

§3.2 Previous Work 43

and dr. The registers ev are assigned values while computing the probability of evi-
dence and represent the arithmetic evaluation of respective nodes. Before differenti-
ating, the register dr for root is initialized to 1, i.e dr(root) = 1, and dr for every other
node N is initialized to 0, i.e. dr(N) = 0, N # root.

Partial differentiation is performed by the following linear time procedure, which
traverses the d-DNNF such that the parents of a node are visited before node: (i) For
every or-parent P of a node N, update dr(N) as dr(N) = dr(N) + dr(P), (ii) for every
and-parent P of a node N let d = dr(P), for every child V of P other than N update
d = d x ev(V), finally update dr(N) = dr(N) + d.

After the differentiation the value in the dr register of a literal x (a leaf node) equals
the probability Pr(xe). This value when divided by the value in the ev register of the
root node (which equals Pr(e)), gives the posterior probability Pr(x|e) according to
Equation 3.2.

For example, Figure 3.5 (right) performs the partial differentiation on the arith-
metic circuit. The numbers at the leaf nodes when divided by Pr(e) = 0.6 give the
respective posterior probabilities. The posterior probability Pr(T = OIS = 1, A = 1) iis
thus 0.36/0.60 = 0.60.

3.2 Previous Work

Having discussed the essentials of probabilities and Bayesian networks, we now for-
mally define the problem of sequential diagnosis and review the previous GDE frame-

work in more detail.

3.2.1 Sequential Diagnosis

Suppose that the system to be diagnosed is formally modeled by a joint probability
distribution Pr(X U H) over a set of variables partitioned into X and H. Variables X
are those whose values can be either observed or measured, and variables H are the
health variables, one for each component describing its health mode.

Diagnosis starts in the initial (belief) state
[0 — PR EXG— x5 (3.8)

where values x, of some variables X, C X (we are using boldface uppercase letters to

mean both sets and vectors) are given by the observation, and we wish to reach a goal

44 Adding Probabilities for Sequential Diagnosis

state
I42= PR H | X5 =%, X — %m) (3.9)

after measuring the values xp of some variables Xy, © X\Xo, [X;n| = 1, one at a time,

such that (the boldface 0 and 1 denote vectors of 0's and 1’s):
SH @S BrH g — 015X x X i —lliand

Pr(H: =0 HNH, = 1 X X N = % o 0

That s, in a goal state a set of components H¢ are known to be faulty with certainty
and no logical inconsistency arises if all other components are assumed to be healthy.
Other types of goal conditions are possible. For example, if the health states of all
gates are to be determined with certainty, the condition will be that Pr(H = 0 [X, =
Xo, Xm = Xm) is 0 or 1 for all H € H (such goals are only possible to reach if strong
fault models are given).

Two special cases are worth mentioning:

(i) If the initial state I, satisfies the goal condition with H¢ = () then the obser-

vation is normal and no diagnosis is required.

(ii) If the initial state Iy satisfies the goal condition with some Hy # (), then the
observation is abnormal but the diagnosis is already completed (assuming
that we are able to check probabilities as necessary); in other words, a

sequence of length 0 solves the problem.

As in [de Kleer and Williams 1987], we assume that all measurements have unit

cost. Hence the objective is to reach a goal state in the fewest measurements possible.

3.2.2 GDE Framework

We start with a definition of Shannon’s entropy ¢, which is defined with respect
to a probability distribution of a discrete random variable X ranging over values

il e ec S Eonm allye

k
E(X) =— Pr(X =xi)log Pr(X = x;) (3.10)
i1
Entropy measures the amount of uncertainty over the value of the random vari-

able. It is maximal when all probabilities Pr(X = x;) are equal, and minimal when one

§3.2 Previous Work 45

of the probabilities is 1, corresponding nicely to our intuitive notion of the degree of

uncertainty.

3.2.2.1 Minimizing Entropy

The classical GDE framework [de Kleer and Williams 1987], on receiving an abnormal
observation X, = X,, considers the Shannon’s entropy of the probability distribution
over the set of all diagnoses. The idea is that the probability distribution over the
diagnoses reflects the uncertainty over the actual faults, and the entropy captures the
amount of this uncertainty. Therefore, GDE uses a one-step lookahead strategy based
on entropy and proposes to measure a variable X that will give the least value of the
entropy of diagnoses resulting from measuring X, on average. The average expected
entropy &.(X) over the diagnoses that result from measuring X can be computed from

the following equation:

k
R Prpe e =) (1)
=1

where &(X = xi) is the entropy of diagnoses resulting from taking the hypothe-
sized measurement X = x;.

Hence the best next variable to measure is the one that has the least value of &¢(X).

3.2.2.2 Computing Probabilities of Variables

GDE does not have an efficient and exact method of computing the probabilities
Pr(X = x;) of values of variables; hence it resorts to estimating them from the
current set of diagnoses as follows: If every diagnosis predicts that X 7 x;, then
Pr(X = xi) = 0; otherwise, the set of diagnoses are divided into two sets namely Sy,
and Uy. The set S,, are those diagnoses that predict the value of X to be x;, whereas
Uy are those that do not predict the value of X. Every diagnosis in Sy, UUx contributes
to the probability Pr(X = x;) such that Pr(X = xi] is the sum of the contributions from
each diagnosis. The contribution from a diagnosis in the set Sy, is the probability of
that diagnosis, whereas the contribution from a diagnosis in the set Uy is only approx-

imated, with an error, €, such that every value of X is assumed to be equally likely.

Formally:

P o= DR e (3.12)
dESxi

46 Adding Probabilities for Sequential Diagnosis

where

1
e — = 0 Prld) (3.13)
deUy
and m is the domain size of X.

Note that if Sy, is empty then the values of X essentially become equally likely.

3.2.2.3 Computing Expected Entropy

In practice, the computation of average expected entropy &.(X) of diagnoses resulting
from hypothesized measurements of X can be done from quantities predicted from
the current set of diagnoses and does not require computing the new set of diagnoses
resulting from measuring X. Suppose that first n of the m possible values of X are
predicted, then:

n m

E=) (BriX=—R) s JERI—fa bt D ey (3.14)

= i=—n+1
where y, is the expected entropy if X is measured to have an unpredicted value

(i.e. all but the diagnoses Uy are eliminated):

Eux =—)_ Pr(d)log(Pr(d)) (3.15)
dEUx

Since the term €, &y, is independent of the value measured, thus rewriting Equa-

tion 3.14 we obtain:
n
Ee(X) = D (Pr(X =) + €x,)E(X = x1) + (M —) ex, £y (3.16)
i=]
Substituting and simplifying gives:

Ee(X) =&+ AEo(X) (BL1Z)
where ¢ is the current entropy and A&.(X) is:

n

A&e(X) = ZPT(X = xi) log(Pr(X = x1)) + Pr(Uy) log(Pr(Ux))

=1

_ nPr(Ux) nPr(Uy)
= log(0) (3.18)

63.2 Previous Work 47

where

Rl =8 “Bi(d)
deUy
Hence the best next measurement is the one that minimizes A&.(X), which does

not require computing the diagnoses resulting from measuring X.

3.2.2.4 Computing Probabilities of Diagnoses

The initial probabilities of diagnoses are computed from prior failure probabilities of

components. Let d be a diagnosis, then the initial probability Pr(d) is given as:

Erid i Bl Benkc) T Pricok €] (3.19)
okCeD okCEH\D
After a measurement X = x; is taken the entropy is updated by updating the
posterior probabilities of the diagnoses, potentially reducing some of them to 0 at
which point they are discarded. The posterior probabilities Pr(d/X = xi) after the
measurement X = x; are computed using Bayes’ rule as:
Pr(X = xild)Pxr(d)

Pl w2 (3.20)

The computation of probability Pr(X = xi/d) again involves estimation, as fol-
lows: If d predicts that X # x; then Pr(X = xi/d) = 0; If d predicts that X = x; then
Pr(X = xi/d) = 1; Otherwise, if d does not predict any value of X then the condi-
tional probabilities Pr(X = xild) of values of X are considered to be equally likely, i.e
PrDE = di=1ly/m:

3.2.2.5 Drawbacks

The results in [de Kleer et al. 1992] involving single-fault cases for ISCAS-85 circuits
indicate that this method leads to measurement costs close to those of optimal poli-
cies. However, a major drawbacks of GDE is that it can be impractical when the
number of diagnoses is large [de Kleer and Williams 1987; de Kleer 2006], as it re-
quires going through the set of diagnoses for the computation of entropy. In prac-
tice, though, one does not need to perform the computationally prohibitive task of
computing the set of all diagnoses, and can only work with a much smaller set of
preferable diagnoses, e.g., the minimal diagnoses, as the available public version of

GDE [Forbus and de Kleer 1993] does, or the even smaller set of nost probable diag-

48 Adding Probabilities for Sequential Diagnosis

=

Figure 3.6: A faulty circuit.

noses [de Kleer 1992]. However, the set of minimal diagnoses can also be exponen-
tially large. In addition, working with a set of most probable diagnoses can com-
promise the quality of the heuristic in terms of diagnostic cost [de Kleer 1992], as the
computed probabilities may be inaccurate. In the next section we will present the new
techniques we have introduced to address the drawbacks of GDE and significantly en-

hance the scalability and efficiency of sequential diagnosis.

3.3 The New Method

We model the circuit as a propositional formula in CNF, and compile it, together with
an abnormal observation, into d-DNNF, where we associate real numbers with the
propositional variables, which represent the prior probabilities of gate failures given
as part of the input to the diagnosis task. Because of the independence condition
that exists among the gates, our d-DNNF compilation amounts to a compilation of
a Bayesian network that compactly encodes the joint probability distribution over all

the wires and faults of the circuit.

To select a measurement point, we use heuristics that do not require the enumera-
tion of all diagnoses. Instead we only require the entropies of the wires together with
the posterior probabilities of component failures. All probabilities required can be ex-
actly computed simultaneously in a single traversal of the d-DNNF which performs

partial differentiation [Darwiche 2003].

We start by presenting in the following section the system modeling and compila-

tion method that underlies our new diagnostic system.

83.3 The New Method 49

Figure 3.7: Bayesian network for the circuit in Figure 3.6.

B ep Ok] 901\|
IR (805 1 0.9
OF[HOD 0 0.1
P_ok J [®ron
1 1 1 0
1 1 0 1
1 0 1 0.5
1 [0) i (0 0.5
0 1 1 1
0 1 0 0
O] 0.5
O i 05

Figure 3.8: CPTs for nodes P,], and ok]. for the Bayesian network in Figure 3.7

3.3.1 System Modeling and Compilation

In order to define a joint probability distribution Pr(X U H) over the circuit behavior,
we first assume that the prior probability of failure Pr(H = 0) is given for each gate
H € H, as part of the input to the diagnosis task [de Kleer and Williams 1987]. For
example, the small table with two entries on the top-right of Figure 3.8 gives the prior

probability of failure for gate J as 0.1.

3.3.1.1 Conditional Probability Tables

Prior fault probabilities alone do not define the joint probability distribution Pr XUH).
In addition, we need to specify for each gate how its output is related to its inputs and
health mode. A conditional probability table (CPT) for each gate does this job.

The CPT shown on the bottom of Figure 3.8, for example, defines the behavior of

50 Adding Probabilities for Sequential Diagnosis

gate J: Each entry gives the probability of its output (J) being a particular value given
the value of its input (P) and the value of its health variable (0kJ). Infease ol =M
the probabilities are always 0 or 1 as the behavior of a healthy gate is deterministic.
The case of ok] = 0 defines the fault model of the gate, which is also part of the input
to the diagnosis task. In our example, we assume that both output values have prob-
ability 0.5 when the gate is broken. For simplicity we assume that all gates have two
health modes (i.e., each health variable is binary); the encoding and compilation to be
described later, however, allows an arbitrary number of health modes.

Given these tables, the joint probability distribution over the circuit behavior can
be obtained by realizing that the gates of a circuit satisfy the Markov property: Given
its inputs and health mode, the output of a gate is independent of any wire which is
not in the fan-out of the gate. This means that the circuit can be effectively treated as
a Bayesian network in the straightforward way, by having a node for each wire and
each health variable, and having an edge going from each input of a gate to its output,
and also from the health variable of a gate to its output. Figure 3.7 shows the result of
this translation for the circuit in Figure 3.6.

The joint probability distribution encoded in the Bayesian network provides the
basis for computing any posterior probabilities that we may need when proposing
measurement points (by the chain rule). However, as said earlier, it does not provide
an efficient way of doing so. Specifically, computing a posterior Pr(X = x | Y =y)
given the values y of all the wires Y with known values involves summing out all
variables other than X and Y, which has a complexity exponential in the number of

such variables if done naively.

3.3.1.2 Propositional Modeling

As we have discussed a Bayesian network can be encoded into a logical formula and
compiled into d-DNNF, which, if successful, allows posterior probabilities of all vari-
ables to be computed efficiently [Darwiche 2003]. For the purposes of sequential di-

agnosis, we encode the Bayesian network as follows.

Consider the subcircuit in the dotted box in Figure 3.6 as an example, which can

be modeled as the following formula, as discussed in Section 1.1.1:

ok] — (] & —P), okA — (A & (JAD))

Note that the above formula fails to encode half of the CPT entries, where ok] =

§3.3 The New Method 51

oKL Hba ol g+ - 0rioky

Figure 3.9: d-DNNF compilation of subcircuit (dotted) in Figure 3.6 given the observation
A AP A D and computation of the posterior probability of —ok].

0. In order to complete the encoding of the CPT of node J, we introduce an extra
Boolean variable 87, and write ~ok] — (] < 0y). Finally, the health variables (0kA,
okJ) are associated with the probabilities of the respective gates being healthy (0.9 in
our experiments), and each 0-variable (8)) is associated with the probability of the
corresponding gate giving an output of 1 when broken (0.5 in our experiments).

Once we write the above clauses for all the gates, our CNF formula is ready for
compilation into d-DNNF. Figure 3.9 shows the d-DNNF compilation of the subcircuit
in the dotted box of Figure 3.6 and the computation of the probability of gate | being
broken under the observation A A P A D. Furthermore, when the value of a variable
becomes known (by measurement), the posterior probabilities of all variables can be
updated simultaneously by differentiating the (smoothed) d-DNNF in time linear in
the size of the d-DNNF [Darwiche 2003](see Section 3.1.3).

3.3.2 Heuristic for Sequential Diagnosis

An optimal solution to sequential diagnosis would be a policy, that is, a plan of mea-
surements conditioned on previous measurement outcomes, where each path in the
plan leads to a diagnosis of the system [Heckerman et al. 1995]. As computing opti-
mal policies is intractable in general, we follow the approach of heuristic measurement
point selection as in previous work.

Able to compute probabilities efficiently and exactly following successful d-DNNF
compilation, we now propose a new two-part heuristic that circumvents the limitation

in scalability of the GDE approach. First, we consider the entropy of a candidate wire

52 Adding Probabilities for Sequential Diagnosis

i 39
2/3|and n
o 43
- \
e N
zer (120
X
e ey
; \ /
/ 2N i N
(o s) A
12 2]2][1]2 2[2

Figure 3.10: Pruning d-DNNF to improve heuristic accuracy.
to be measured.

3.3.2.1 Heuristic Based on Entropy of Wire

Since a wire X only has two values, its entropy can be written as:
e (= (palespsiprloggs) (3.21)

where py = Pr(X = 1| Y =y) and px = Pr(X = 0 | Y =y) are the posterior proba-
bilities of X having values 1 and 0, respectively, given the values y of wires Y whose
values are known.

While &(X) captures the uncertainty over the value of the wire, we can also inter-
pret it as the average amount of information gain provided by measuring the wire.
Hence as a first idea we consider selecting a wire with maximal entropy for measure-

ment at each step.

3.3.2.2 Improving Heuristic Accuracy

This idea alone, however, did not work very well in our initial experiments as the
diagnostic cost still remained quite high in many cases. As would be confirmed by
subsequent experiments, this is largely due to that the (implicit) space of all diagnoses
is generally very large and can include a large number of unlikely diagnoses, which
tends to compromise the accuracy of the information gain provided by the entropy.
The experiments to confirm this explanation are as follows.

When the d-DNNF compilation is produced, and before it is used to compute
probabilities, we prune the d-DNNF graph so that models (satisfying variable assign-
ments) corresponding to diagnoses with more than k broken gates are removed. A

complete pruning is not easy; however, an approximation can be achieved in time

§3.3 The New Method 53

linear in the d-DNNF size, by a variant of the minimization procedure described

in [Darwiche 2001], which is explained later.

It requires associating two integer registers with each node n of the d-DNNF,
namely ur and dr, and a two-pass traversal through the d-DNNF described below.
The ur register is updated during upward traversal and represents the minimum-
cardinality of diagnoses under a node, whereas the dr register is updated during
downward traversal and represents the upper bound on the fault-cardinality for a
node which is used to prune branches emanating from the node whose ur exceeds the
bound. The two passes of the procedure are as follows: Initialize ur(n) to 0 and dr(n)
to -oo (least possible value) for all n. Traverse the d-DNNF so that children are visited
before parents and for every leaf node, set ur(n) to 1 if n is a negated health variable
and 0 otherwise; for every or node, set ur(n) to the minimum of the values of ur of its
children; for every and node set ur(n) to the sum of the values of ur of its children.
Now traverse the d-DNNF so that parents are visited before children and set dr for
the root node to the value k; for every or node, remove every child p of n for which
ur(p) > dr(n) and for every remaining child v set dr(v) to dr(n) if dr(n) > dr(v); for
every child p of every and node, let t,, be the sum of the values of ur of all the other

children and set dr(p) to the value t,, if t, > dr(p).

An example is shown in Figure 3.10. The ur and dr registers are shown for each
node. The branches labeled «, 3, v, and n are sub-graphs associated with hypothetical
values for ur registers. The figure shows that the minimum-cardinality for every node
(ur) is less than or equal to the bound (dr) except for the branch labeled n, which gets
pruned accordingly.

We set the initial k to the number of actual faults in the experiments, and ob-
served that a significant reduction of diagnostic cost resulted in almost all cases. This
improved performance is apparently due to that the pruning updates the posterior
probabilities of all variables, making them more accurate since many unlikely diag-

noses have been eliminated.

In practice, however, the number of faults is not known beforehand and choosing
an appropriate k for the pruning can be nontrivial (note that k need not be exactly
the same as the number of actual faults for the pruning to help). Interestingly, the
following heuristic, which is the one we will actually use, appears to achieve a similar
performance gain in an automatic way: We select a component that has the highest
posterior probability of failure (an idea from [Heckerman et al. 1995]), and then from

the variables of that component, measure the one that has the highest entropy. This

54 Adding Probabilities for Sequential Diagnosis

Algorithm 3.3.1 Probabilistic sequential diagnosis
function PSD(C, A, D, y, k)

inputs: {C: circuit}, {A: d-DNNF}, {y: measurements}, {k: fault cardinality }, { D: ordered set
of known faults}

output: {pair< D,y >}

REDUCE (A, D, k — |D|) if D has changed

2: Given y on variables Y, EVALUATE (A, y) to obtain Pr(y)
3: DIFFERENTIATE (A) to obtain Pr(X = 1,y) V wires X

4: Deduce faultas D = D U {X : Pr(okX = 1,y) = 0}

5. if D has changed && MEETSCRITERIA(A,D,y) then

6 returnEa DS

7 endif

8: Measure wire X which is the best under a given heuristic
9: Add the measured value x of X to y, and go back to line 1

sy

heuristic does not require the above pruning of the d-DNNF, and appears to improve
the diagnostic cost to a similar extent by focusing the measurement selection on the
component most likely to be broken (empirical results to this effect are given and

discussed in Section 3.4).

3.3.3 The Algorithm

We start by encoding the circuit as a logical formula as described in Section 3.3.1,
where a subset of the variables are associated with numbers representing the prior
fault probabilities and probabilities involved in the fault models of the gates, which is
then compiled into d-DNNF A.

The overall sequential diagnosis process we propose is summarized in Algo-
rithm 3.3.1. The inputs are a circuit C, its d-DNNF compilation A, the set of faults D
(which is empty but will be used in the hierarchical approach), a set of known values
y of wires, and an integer k specifying the fault cardinality bound (this is for running
the model pruning experiments described in Section 3.3.2.2, and is not required for
diagnosis using our final heuristic). We reduce A by pruning some models (line 1)
when the fault cardinality bound k is given. We then evaluate (line 2) and differen-
tiate (line 3) A, select a measurement point and take the measurement (line 8), and
repeat the process (line 9) until the stopping criteria are met (line 5).

The stopping criteria on Line 5 are given earlier in Section 3.2 as the goal condition,
i.e., we stop when the abnormal observation is explained by all the faulty gates D
already identified assuming that other gates are healthy. A faulty gate X is identified
when Pr(okX = 1,y) = 0 where y are the values of wires that are already known,

and as mentioned earlier these probabilities are obtained for all gates simultaneously

3.4 Experimental Results 55

in the d-DNNF differentiation process. Finally, the condition that the current set of
faulty gates, with health modes Hy, explains the observation is satisfied when Pr(H¢ =
0,H\H¢ = 1)y) > 0, which is checked by a single evaluation of the original d-DNNF.
The algorithm returns the actual faults together with the new set of known values of
wires (line 6).

We proceed now to describe a thorough empirical evaluation of the new sequential

diagnosis algorithms.

3.4 Experimental Results

This section provides an empirical evaluation of our new diagnostic system, referred
to as SDC (sequential diagnosis by compilation), that implements the approaches de-
scribed in Section 3.3.2. All experiments were conducted using the same hardware
and with the same memory and time limits described in Section 2.5.

We generated test cases for single- and multiple-fault scenarios using ISCAS-85
benchmark circuits. For single faults, we simulated the equal prior probability of
faults by generating n fault scenarios for each circuit, where n equals the number of
gates in the circuit: Each scenario contains a different faulty gate. We then randomly
generated 5 test cases for each of these n scenarios. Doing the same for multiple-
fault scenarios would not be practical due to the large number of combinations, so for
each circuit we simply generated 500 (for circuits up to ¢1355) or 100 (for remaining
circuits) random scenarios with the given fault cardinality and a random test case for
each scenario.

Each test case is a faulty circuit where some gates give incorrect outputs. The
inputs and outputs of the circuit are observed, and actual values of its wires are used
to simulate the results of taking measurements. We use Pr(okX = 1) = 0.9 for all gates
X of the circuit. Note that such cases, where all gates fail with equal probability, are
conceivably harder to solve as the diagnoses will tend to be less differentiable. Then,
for each gate, the two output values are given equal probability when the gate is
faulty. Again, this will tend to make the cases harder to solve due to the high degree
of uncertainty. For each circuit and fault cardinality, we report the cost (number of
measurements taken) and time (in seconds) to locate the faults, averaged over all test
cases solved.

We start with a comparison of SDC with GDE and show that sDC scales to much

larger circuits, hence illustrating the effectiveness of our new heuristic (along with the

56 Adding Probabilities for Sequential Diagnosis

; single-fault|double-fault triple-fault
oo cost time |cost time |cost time
CoE oo 20 |38 e A Ol
13 EhaE 56 OT0 T [evAR () O/ 28 I 201
Gpe BB Gee |3 sl s
= Soc |[Z52 D@t (29 oen 28 ol
CDE §|3:4 = 68N 55 88 43 299
1 Goe |[39 OOl 84 @ |87 - 0l
EDEH [BBIEROR 31 BEOH6 82 8o (10
e gore |[or5 @il |3k o ouenls |22 ekl
17 |_GDE 3.7 2876 |46 4103 |45 2067
ShE FBISE D10 (P ()10 S eSS (1]

Table 3.1: Comparison with GDE.

new way to compute probabilities).

3.4.1 Comparison with GDE

We used the publicly available version of GDE [Forbus and de Kleer 1993] for the com-
parison, downloadable from http://www.qrg.northwestern.edu/BPS/readme.html.
GDE uses ATCON, a constraint language developed using the LISP programming lan-
guage, to represent diagnostic problem cases. A detailed account of this language is
available in [Forbus and de Kleer 1993]. Further, it employs an interactive user inter-
face that proposes measurement points with their respective costs and lets the user
enter outcomes of measurements. For the purpose of comparison we translated our
problem descriptions to the language accepted by GDE, and also modified GDE to au-
tomatically read in the measurement outcomes from the input problem description.
We also compiled the LISP code to machine dependent binary code using the native
C compiler to improve run-time performance.

GDE quickly ran out of memory even on the smallest circuit (c432) in
ISCAS-85. We observed that the Assumption Based Truth Maintenance System
[Forbus and de Kleer 1993], used by GDE as a reasoning system to generate minimal
diagnoses, actually generated exponentially many sets of assumptions (about values
of system variables, called environments) before running out of memory. Note that re-
sultsin [de Kleer et al. 1992] were obtained by using a simple reasoning system which
assumes a single fault, in which case the number of diagnoses is bounded by the num-
ber of gates. We also note that GDE has to recompute the minimal diagnoses after each

measurement [de Kleer and Williams 1987], while in our approach the circuit (or its

3.4 Experimental Results 57

single-fault|double-fault| five-fault
cost time | cost time | cost time
riol ROPISEED) RO/ 7 DB | 1172892615
yes 5 S(I36 S DR F90 i1 720,
ol 2 OR6I68 FA P 5D RS R (168 AP 515
yes B LIEIER S O D) 805 1248
10 677 M6 s DI ROV ENIB)
yes ahsy o ALLOE el |l A

roRs i109:68 S 0888 1206 SIESS 50 1014
yes 5150 28 P20 00 041907
1o SN 0780 541 ORE= I5E OIS0
yes BIoMN02 =B 7 e (0221185 708 0.5
10 S5y 0B Sl Rl S (o)l S (0
yes 484025110 (R D 457 80D

o PON OSSN EOM 251 FSMIRIR0 S8 8 (064808
yes 5.4 =02 A7 B0 B e|205 7518
10 D6 B FS 2SR (04T (F 70/ R0 72
yes LR 288 68 DA S (0 S8R0 2
10 MRS 2 ez 2 s U3
yes HI6ER02 H6 7 008 S 005

oS B2 7PN 865 785 VR4 874 55.6
yes 70N)48 P59 ORI =S (32 86 H8 5
1o B ILeE [Sak - il PITEICE Bt
yes oS04 55N 04 65 O
10 BN (:S NI4T SRR 0I5 IS 0.8
yes S0 0.4 O AR 0680 84 0.6

circuit|system|pruning

c432 | RAND

(160 gates) | SDC (ew)

SDC(fp)

c499 | RAND

(202 gates) | SDC(ew)

SDCfp)

c880 | RAND

(383 gates) | SDC(ew)

SDCifp)

c1355 | RAND

(546 gates) | SDC(ew)

SDCfp)

Table 3.2: Effectiveness of heuristic.

abstraction) is compiled only once and the same compilation used to compute all the
probabilities required during the whole diagnosis session.

To enable a useful comparison, we extracted a set of small subcircuits from the
ISCAS-85 circuits: 50 circuits of size 13, 14, 15 and 16, and 10 circuits of size 17. For
each circuit we randomly generated 5 single-fault, 5 double-fault, and 5 triple-fault
scenarios, and one test case (input/output vector) for each fault scenario.

Table 3.1 summarizes the comparison between GDE and SDC (baseline) on these
benchmarks, where the first column shows the size the circuit. It is clear that the
running time of GDE increases by roughly an order of magnitude with an increase of
just one gate in the circuit size. SDC performs as well as GDE in terms of diagnostic

cost, and solves every case instantly while GDE takes up to more than an hour.

3.4.2 Larger Benchmarks

To evaluate the performance of SDC on the larger ISCAS-85 circuits, we have again

conducted three sets of experiments, this time involving single, double, and five

58 Adding Probabilities for Sequential Diagnosis

faults, respectively. As the version of GDE available to us is unable to handle these
circuits, in order to provide a systematic reference point for comparison we have im-
plemented a random strategy where a random order of measurement points is gener-
ated for each circuit and used for all the test cases. This strategy also uses the d-DNNF
to check whether the stopping criteria have been met.

Table 3.2 shows the comparison between the random strategy and SDC using the
baseline approach with two different heuristics, one based on entropies of wires alone
(ew) and the other based also on failure probabilities (fp). For each of the three systems
we ran the same set of experiments with and without pruning the d-DNNF (using the
known fault cardinality as described in Section 3.3.2.2), indicated in the third column
of the table. Only the test cases for the first four circuits could be solved. For other
circuits the failure occurred during the compilation phase, and hence affected both
the random strategy and sDC.

It is clear that the diagnostic cost is significantly lower with both heuristics of SDC
than with the random strategy whether or not pruning has been used. It is also in-
teresting to note that pruning significantly reduces the diagnostic cost for the random
and SDC-ew strategies, but has much less effect on SDC-fp except in a few cases (c1355
single-fault).

Comparing the diagnostic cost of the two heuristics of SDC shows that SDC-fp
dominates SDC-ew across the board, both with and without pruning. With few excep-
tions (e.g., 1355 and ¢880, single-fault), SDC-fp without pruning exhibits an overall
performance comparable to or better than that of SDC-ew with pruning. As mentioned
earlier, this indicates that the combination of failure probabilities and wire entropies
appears to achieve an effect similar to that of pruning; in other words, it achieves an

automatic pruning effect without requiring a fault cardinality bound.

3.5 Conclusions

We have presented a new system, called sDC, for sequential diagnosis that signifi-
cantly advances the state of the art by solving, for the first time, a set of nontrivial
multiple-fault diagnostic cases on large benchmark circuits, where no restriction on
the cardinality of faults is assumed before hand. On the small benchmarks that can
be solved by the previous GDE system, SDC also exhibits much higher efficiency and

comparable performance in terms of diagnostic cost.

Chapter 4

Hierarchical Sequential Diagnosis

This chapter combines the hierarchical diagnosis approach of Chapter 2 with
the sequential diagnosis method of Chapter 3 to scale sequential diagnosis to
larger systems. Some of the material presented in Section 4.1 was published
in [Siddigi and Huang 2008]. Here we further extend this work with a novel tech-
nique of gate cloning to reduce the abstraction size of a system that scales sequential
diagnosis to some of the largest benchmark systems. We present our techniques in
Sections 4.1 and 4.2, describing the hierarchical sequential diagnosis and gate cloning re-
spectively, whereas empirical evidence for their effectiveness is given in Section 4.3.

Conclusions are drawn in Section 4.4.

4.1 Hierarchical Approach

As discussed in Section 2.4, the basic idea of hierarchical diagnosis is that the com-
pilation of the system model into d-DNNF will be more efficient and scalable when
the number of system components is reduced. This can be achieved by abstraction,
where subsystems, known as cones, are treated as single components. An example of
a cone is depicted in Figure 3.6. The objective here is to use a single health variable
and failure probability for the entire cone, hence significantly reducing the size of the
encoding and the difficulty of compilation. Once a cone is identified as faulty in the
top-level diagnosis, it can then be compiled and diagnosed, in a recursive fashion.

In Chapter 2, we only dealt with the task of computing diagnoses, which does not
involve probabilities or measurement selection. In the context of sequential diagnosis,
several additional techniques have been introduced, particularly in the computation
of prior failure probabilities for the cones and the way measurement points are se-

lected, detailed below.

59

60 Hierarchical Sequential Diagnosis

4.1.1 Propositional Encoding

We start with a discussion of the hierarchical encoding for probabilistic reasoning,
which is similar to the hierarchical encoding presented in Chapter 2. Specifically, for
the diagnosis of the abstraction Ac of the given circuit C, only the nodes correspond-
ing to the gates Ac\Ic will have extra health nodes in the corresponding Bayesian
network, which are the nodes {A, B, D, K, V} in our example (I¢ stands for the set of
inputs of the circuit C). The node ok] is removed from the Bayesian network in Fig-
ure 3.7, as] is a wire internal to the cone rooted at A.

In addition, we assume that a cone always outputs a wrong value when it fails
(which is explained in Section 4.1.2), due to which no extra network parameter is
needed to complete the CPT of the cone, but extra clauses modeling the abnormal
behavior of the cone are required. For example, the encoding given in Section 3.3.1.2

for cone A in Figure 3.6 (in the dotted box) is modified as follows:

J & =P, okA —= (A< (JAD)), ~okA — (A ¢ (JAD))

The first part of the formula encodes the normal behavior of gate | (without a
health variable); the next encodes the normal behavior of the cone; the last encodes
that the cone outputs a wrong value when it fails. Other gates (that are not roots of
cones) in the abstraction Ac are encoded as described in Section 3.3.1.2.

The formulas for all the gates in a cone together encode a single CPT for the whole
cone, which provides the conditional probability of the cone’s output given the health
and inputs of the cone, instead of the health and inputs of the gate at the root of the
cone. For example, the above encoding is meant to provide the conditional probability
of A given P, D, and okA (instead of], D, and okA), where okA represents the health
mode of the whole cone and is associated with its prior failure probability, which
is initially unknown to us and has to be computed for all cones (explained below).
Such an encoding of the whole circuit provides a joint probability distribution over
the variables Ac U Ic U H, where H = {okX | X € Ac\I¢).

4.1.2 Prior Failure Probabilities for Cones

When a cone is treated as a single gate, its prior probability of failure as a whole can
be computed given the prior probabilities of gates and cones inside it. Specically we
have to compute the prior probabilities of variable okX for every cone X. We do this

by creating two copies Ay, and A¢ of the cone, where A;, models only the healthy

44.1 Hierarchical Approach 61

behavior of the cone (without health variables), and As includes the faulty behavior
as well (i.e., the full encoding described in Section 3.3.1.2). The outputs of both Ay,
and Ay are collected into an XOR-gate X. When the output of XOR-gate X equals to
1 it enforces that both of its inputs must be different in value. We then compute the
probability Pr(X = 1), which gives the probability of the outputs of Ay and As being
different. We compute this probability by compiling the encoding of the cone into
d-DNNF and evaluating it under X = 1.

Note that this procedure itself is also abstraction based and hierarchical, per-
formed bottom-up with the probabilities for the inner cones computed before those
for the outer ones. Also note that it is performed only once per circuit as a preprocess-

ing step.

4.1.3 Measurement Point Selection and Stopping Criteria

In principle, the heuristic to select variables for measurement and the stopping crite-
ria are the same as in the baseline approach; however, a couple of details are worth
mentioning.

First, when diagnosing the abstraction of a given circuit (or cone) C, the measure-
ment candidates are restricted to variables Ac U I¢, ignoring the internal wires of the
maximal cones—those are only measured if a cone as a whole has been found faulty.

Second, when diagnosing a cone, it is generally important to have full knowledge
of the values of its inputs before a final diagnosis is concluded. A diagnosis of a cone
concluded with only partial knowledge of its inputs may never be part of any valid
global diagnosis. The reason is that the diagnosis of the cone assumes that the un-
known inputs can take either value, while in reality their values may become fixed
when wires in other parts of the circuit are measured. To avoid this situation while re-
taining the effectiveness of the heuristic, we modify the measurement point selection
as follows when diagnosing a cone. After selecting a gate with the highest probability
of failure, we consider the wires of that gate plus the inputs of the cone, and measure
the one with the highest entropy. We do not conclude a diagnosis for the cone until
values of all its inputs become known (through measurement or deduction), except
when the health of all the gates in the cone has been determined without knowing
all the inputs to the cone (it is possible to identify a faulty gate, and with strong fault
models also a healthy gate, without knowing all its inputs). Generally, the cost in-
crease due to this is insignificant because when a cone is concluded as faulty in the

abstraction of a circuit, the values of a significant number, if not all, of its inputs are

62 Hierarchical Sequential Diagnosis

Algorithm 4.1.1 Hierarchical probabilistic sequential diagnosis
function HPSD(C, uc, k)
inputs: {C: circuit},{uc: obs. across circuit} {k: fault cardinality }
local variables: {B, D, T : set of gates} {y, z, ug : set of measurements} {i,k" : integer}
output: {pair< D, uc >}

1: A « COMPILE2DDNNF (Ac, uc)

21 0,De¢,yuc

3By & PSHI(@ FATIB Byl

4: for{;i < |Bl;i++} do

5: G «ELEMENT (B, 1)

6: if Gisacone then

: z « y U IMPLICATIONS (A, y)

8: ug «— {x:x €z, X elIgUOg}

9: kK —k—|D—|Bl+i+2

10: < T,ug >« HPSD(Dg U Ig, ug, k')

ilils V7 (=7 Uit 1D)s= IDJUIIT

12 EVALUATE (4, y), DIFFERENTIATE (A)
13: else

14: D « DU{G}

15: end if

16: end for

17: z « y U IMPLICATIONS (A, y)

18: uc «— ucU{x:x €z,X € Ic UOc]}
19: if MEETSCRITERIA (C, D, y) then
20: return < D | uc >

21: else

22: goto line 3

23: end if

often already known.

41.4 The Algorithm

Pseudocode for the hierarchical approach is given in Algorithm 4.1.1 as a recursive
function. The inputs are a circuit C, a set of known values uc of wires at the inputs
I¢ and outputs Oc of the circuit, and again the optional integer k specifying the fault
cardinality bound for the purpose of experimenting with the effect of model pruning.
We start with the d-DNNF compilation of the abstraction of the given circuit (line 1)
and then use the function PSD from Algorithm 3.3.1 to get a diagnosis B of the abstrac-
tion (line 3), assuming that the measurement point selection and stopping criteria in
Algorithm 3.3.1 have been modified according to what is described in Section 4.1.3.
The abstract diagnosis B is then used to get a concrete diagnosis D in a loop (lines 4-
14). Specifically, if a gate G € B is not the root of a cone, then it is added to D (line 14);

otherwise cone G is recursively diagnosed (line 10) and the result of it added to D

4.1 Hierarchical Approach 63

(line 11).

Before recursively diagnosing a cone G, we compute an abnormal observation ug
at the inputs and the output (Ig U {G}) of the cone G. The values of some of G’s
inputs and output will have been either measured or deduced from the current set of
measurements. The value of a gate X is implied to be x under the measurements y
if Pr(X = —x,y) = 0, which is easy to check once A has been differentiated under y.
The function IMPLICATIONS(A, y) (lines 7 and 15) implements this operation, which
is used to compute the partial abnormal observation ug (line 8). A fault cardinality
bound k’ for the cone G is then inferred (line 9), and the algorithm called recursively

to diagnose G, given ug and k.

The recursive call returns the faults T inside the cone G together with the updated
observation ug. The observation ug may contain some new measurement results
regarding the variables I U {G}, which are added to the set of measurements y of the
abstraction (line 11); other measurement results obtained inside the cone are ignored
due to reasons explained in Section 4.1.3. The concrete diagnosis D is augmented with
the faults T found inside the cone (line 11), and A is again evaluated and differentiated

in light of the new measurements (line 12).

After the loop ends, the variable uc is updated with the known values of the inputs
Ic and outputs Oc of the circuit C (line 16). The stopping criteria are checked for
the diagnosis D (line 17) and if met the function returns the pair < D, uc > (line 18);
otherwise more measurements are taken until the stopping criteria (line 17) have been
met. Note that it is quite possible that the abstract diagnosis B meets the stopping
criteria while the concrete diagnosis D obtained from B does not, an example of which

is given in Section 4.1.4.1.

Since D can contain faults from inside the cones, the compilation A cannot be used
to check the stopping criteria for D (note the change in the parameters to the function
MEETSCRITERIA at line 17) as the probabilistic information regarding wires inside
cones is not available in A. The criteria are checked as follows instead: We first prop-
agate the values of inputs in the circuit, and then propagate the fault effects of gates
in D, one by one, by flipping their values and propagating them towards the circuit
outputs in such a way that deeper faults are propagated first (see Chapter 2), and then

check the values of circuit outputs obtained for equality with those in the observation

(y)-

64 Hierarchical Sequential Diagnosis

K

Figure 4.2: Creating a clone B’ of B according to D.

4.1.4.1 Example

Suppose that we diagnose the abstraction of the circuit in Figure 3.6, with the obser-
vationuc = {P = 1,Q = 1,R = 0,V = 1}, and take the sequence of measurements
y=1{D =1,K=1,A = 1]. Itis concluded, from the abstract system model, that given
the values of P and D, the value 1 at A is abnormal. So the algorithm concludes a fault
at A. Note that Q = 1 and D = 1 suggests the presence of another fault besides A trig-
gering the measurement of gate B, which is also found faulty. The abstract diagnosis
{A, B} meets the stopping criteria with respect to the abstract circuit. We then enter the
diagnosis of cone A by a recursive call with observationuy ={P=1D =1,A = 1}.
The only unknown wire J is measured and found faulty, which explains the observa-
tion at cone’s output A, given its inputs P and D. The recursion terminates and the
abstract diagnosis B = {A, B} generates the concrete diagnosis D = {J, B}, which meets

the stopping criteria and the algorithm terminates.

4.2 Gate Cloning 65

4.2 Gate Cloning

In the preceding section, we have proposed an abstraction based approach to sequen-
tial diagnosis, which reduces the complexity of compilation and diagnosis by reduc-
ing the number of system components to be diagnosed. We now take one step further,
aiming to handle systems that are so large that they remain intractable even after ab-
straction, as is the case for the largest circuits in the ISCAS-85 benchmark suite.

Our solution is a novel method that systematically modifies the structure of a cir-
cuit to reduce the size of its abstraction. Specifically, we select a gate G with parents
P that is not part of a cone and hence cannot be abstracted away in hierarchical diag-
nosis, and create a clone G’ of it according to some of its parents P’ C P in the sense
that G’ inherits all the children of G and feeds into P’ while G no longer feeds into
P’ (see Figures 4.1 and 4.2 for an example). The idea is to create a sufficient number
of clones of G so that G and its clones become part of some cones and hence can be
abstracted away. Repeated applications of this operation can allow an otherwise un-
manageable system to have a small enough abstraction for compilation and diagnosis
to succeed. The hierarchical algorithm is then extended to diagnose the new circuit
and the result mapped to the original circuit. We show that we can now solve almost
all the benchmark circuits, using this approach.

Before we go into the details of the new method, we differentiate it from a tech-
nique known as node splitting [Choi et al. 2007], which is used to solve MPE queries on
a Bayesian network. Node splitting breaks enough number of edges between nodes
from the network such that the MPE query on the resulting network becomes easy
to solve. A broken edge is replaced with a root variable with a uniform prior. The
resulting network is a relaxation or approximation of the original in that its MPE
solution, which may be computed from its compilation, gives an upper bound on
the MPE solution of the original network. A depth-first branch and bound search
algorithm then searches for an optimal solution using these bounds to prune its
search space. A similar approach is also used to solve Weighted Max-SAT prob-
lems [Pipatsrisawat and Darwiche 2007]. We shall give a detailed account of this tech-
nique in Chapter 5.

This version of node splitting is not directly applicable in the present setting for
the following reasons. If edges in a circuit are broken and redirected into new root
variables (primary inputs), the resulting circuit represents a different input-output
function from that of the original circuit. The abnormal observation on the original

circuit may hence become a normal one on the new circuit (if the wires through which

66 Hierarchical Sequential Diagnosis

the fault propagates are broken), eliminating the basis for diagnosis. Our technique
of gate cloning, which can also be viewed as a version of node splitting, introduces
clones of a gate instead of primary inputs and preserves the input-output function of
the circuit. Also, the new circuit is a relaxation of the original in that its diagnoses are
a superset of those of the original.

We now formally define gate cloning.

Definition 4.2.1 (Gate Cloning)
Let G be a gate in a circuit C with parents P. We say that G is cloned according to

parents P’ C P when it results in a circuit C’ that is obtained from C as follows:

e The edges going from G to its parents P' are removed.

e A new gate G’ functionally equivalent to G is added to the circuit such that G’

shares the inputs of G and feeds into each of P'.

Figures 4.1 and 4.2 show an example where creating a clone B’ of B according
to {D} results in a new circuit whose abstraction contains only the gates {A, D, K, V],

whereas the abstraction of the original circuit contains also gate B.

4.2.1 Choices in Gate Cloning

There are two choices to be made in gate cloning: Which gates do we clone, and for
each of them how many clones do we create and how do they split the parents?

Since the goal of cloning is to reduce the abstraction size, it is clear that we only
wish to clone those gates that lie in the abstraction (i.e., not within cones). Among
these, cloning of the root of a cone cannot reduce the abstraction size as it will destroy
the existing cone, reintroducing some of the gates inside the cone into the abstraction.
For example, cloning D according to K in Figure 4.2 will produce a circuit where D
and its clone can be abstracted away but B’ is no longer dominated by D and hence is
reintroduced into the abstraction. Therefore, the final candidates for cloning are pre-
cisely those gates in the abstract circuit that are not roots of cones. Note that the order
in which these candidates are processed is unimportant in that each when cloned will
produce an equal reduction, namely a reduction of precisely 1 in the abstraction size,
if any.

It then remains to determine for each candidate how many clones to create and
how to connect them to the parents. To understand our final method, it helps to con-

sider a naive method that simply creates [P| — 1 clones (where P is the set of parents)

4.2 Gate Cloning 67

and has each clone, as well as the original, feed into exactly one parent. This way
every parent of the gate becomes the root of a cone and the gate itself and all its clones
are abstracted away. In Figure 4.1, for example, B has three parents {E, A, D}, and this
naive method would create two clones of B for a total of three instances of the gate to
split the three parents, which would result in the same abstraction as in Figure 4.2.

The trick now is that the number of clones can be reduced by knowing that some
parents of the gate may lie in the same cone and a single clone of the gate according
to those parents will be sufficient for that clone to be abstracted away. In the example
of Figure 4.1, again, the parents E, A of B lie in the same cone A and it would suffice
to create a single clone of B according to {E, A}, resulting in the same, more efficient
cloning as in Figure 4.2.

More formally, we partition the parents of a gate G into subsets Py, Py, ..., Pg such
that those parents of G that lie in the same cone are placed in the same subset and
the rest in separate ones. We then create ¢ — 1 clones of G according to any q — 1
of these subsets, resulting in G and all its clones being abstracted away. This process
is repeated for each candidate gate until the abstraction size is small enough or no

further reduction is possible.

4.2.2 Diagnosis with Gate Cloning

The new circuit is functionally equivalent to the original and has a smaller abstraction,
but is not equivalent to the original for diagnostic purposes. As the new model allows
a gate and its clones to fail independently of each other, it is a relaxation of the original
model in that the diagnoses of the new circuit form a superset of those of the original.
Specifically, each diagnosis of the new circuit that assigns the same health state to a
gate and its clones for all gates corresponds to a diagnosis of the original circuit; other
diagnoses are spurious and are to be ignored.

The core diagnosis process given in Algorithm 4.1.1 continues to be applicable on
the new circuit, with only two minor modifications necessary. First, the spurious di-
agnoses are (implicitly) filtered out by assuming the same health state for all clones
(including the original) of a gate as soon as the health state of any one of them is
known. Second, whenever measurement of a clone of a gate is proposed, the actual
measurement is taken on the original gate in the original circuit, for obvious reasons
(in other words, the new circuit is used for reasoning and the original for measure-
ments).

In principle, the presence of spurious diagnoses in the model can potentially skew

68 Hierarchical Sequential Diagnosis

Sy : single- fault | double-fault | five-fault
it e e cost time |cost time | cost time
c432 1o il o | ABE. O [[2220 08
(64 cones) yes 49 (RN ET O L S () P B R ()7
499 1o 7.8 0.1 5.8 0.1 ops) (02
(G0icones) yes 4.5 0.1 819 0.1 O 02
880 1o 915 01 k2 (L1 WA (02
(177 cones) yes 5.6 .l 7.6 oLl i6:3EM ()2
c1355 10 98 0.3 8 0.2 4208053
(162 cones) yes 5.8 0.2 6.3 (02 144 03
1908 10 A0S 207 S5 51 751 S 5 87 IR A IORE5)5
(374 cones) yes SIOESEE D B8 S8 463 |324 383
2670 no i6:3 8= 2i RN RIQID NS 7D 25 S5
(580 cones) es 615 196841358 90 243 45

Table 4.1: Effectiveness of abstraction.

the measurement point selection heuristic (at least in the early stages of diagnosis,
before the spurious diagnoses are gradually filtered out). However, by using smaller
benchmarks that could be diagnosed both with and without cloning, we conducted
an empirical analysis which indicates, interestingly, that the overall diagnostic cost is

only slightly affected. We discuss this in more detail in Section 4.3.2.

4.3 Experimental Results

We present the experiments in two subsections demonstrating the effectiveness of the
two techniques proposed in this chapter, namely the hierarchical sequential diagnosis,
and gate cloning. The experiments are conducted on test cases used in Section 3.4
(of the last chapter) for diagnosing ISCAS-85 benchmark circuits using our baseline

approach.

4.3.1 Effectiveness of Abstraction

We now report, in Table 4.1, the results of repeating the same experiments with SDC-
fp (failure probabilities based heuristic) using the hierarchical approach and compare
them with the corresponding results (of our baseline approach) in Table 3.2.

Most notably, the running time generally reduces for all cases and we are now
able to handle two more circuits, namely ¢1908 and ¢2670, solving 139 of 300 cases

for ¢1908 and 298 of 300 cases for ¢2670 in the three categories combined. In terms

4.3 Experimental Results

69

b bt total | abstraction | cloning | total | abstraction size
gates size time | clones | after cloning
c432 160 59 0.03 o7 39
c499 202 58 0.02 0 58
c880 383 7 0.1 24 57
c1355 58 58 0.05 0 58
c1908 | 880 160 0.74 237 70
c26708(H1593 167 0.77 110 116
c3540 | 1669 858 5.64 489 165
c5315 82807 385 3.6 358 266
c6288 | 2416 1456 0.16 0 1456
c75523| 18512 545 6.68 562 378

Table 4.2: Results of preprocessing step of cloning.

.. |single- fault | double-fault | five-fault
circuit . - -

cost time | cost time cost time

32 07D 10.3 6.6 7.8 9.6 9.7

c880 |11.2 0.2 9.3 0.2 162208

Table 4.3: Effect of gate cloning on diagnostic performance.

of diagnostic cost, in most cases the hierarchical approach is comparable to the base-
line approach. On ¢432, the baseline approach consistently performs better than the
hierarchical in each fault cardinality, while the reverse is true on ¢1355.

The results indicate that the main advantage of hierarchical approach is that larger
circuits can be solved. For circuits that can also be solved by the baseline approach,
hierarchical approach may help reduce the diagnostic cost by quickly finding faulty
portions of the circuit, represented by a set of faulty cones, and then directing the
measurements inside them, which can result in more useful measurements. On the
other hand, it may suffer in cases where it has to needlessly go through hierarchies
to locate the actual faults, while the baseline version can find them more directly and
efficiently. Finally, we note that pruning helps further reduce the diagnostic cost to

various degrees as with the baseline approach.

4.3.2 Effectiveness of Gate Cloning

In this subsection we discuss the experiments with gate cloning. We show that cloning
does not significantly affect diagnostic cost and allows us to solve much larger circuits,
in particular, nearly all the circuits in the ISCAS-85 suite.

Table 4.2 shows the result of the preprocessing step of cloning on each circuit. The
columns give the name of the circuit, the total number of gates in that circuit, the size

of the abstraction of the circuit before cloning, the time spent on cloning, the total

70 Hierarchical Sequential Diagnosis

single- fault | double-fault | five-fault
cost time |cost time cost time
432 5 N SR ()] 202N (8]
880 | 8.8 0.1 95 0.1 5 02
cI908TE[FIsTe 2SI 81813 =510 3545 1
c26707 [El3i5E a5 (5185 0.7 AL 2
¢35408 27230 s (SO E/2i5 8 (RS 6 NI (ST0
5815882 2608 5.9 244 6.6
7552 [70.6 1056 [43.1 129.0 |104.8 1108

circuit

Table 4.4: Hierarchical sequential diagnosis with gate cloning (c499 and ¢1355 omitted as they
are already easy to diagnose and cloning does not lead to reduced abstraction).

number of clones created in the circuit, and the abstraction size of the circuit obtained
after cloning. On all circuits except c499, c1355, and ¢6288, a significant reduction in
the abstraction size has been achieved. c6288 appears to be an extreme case with a
very large abstraction that lacks hierarchy, while gates in the abstractions of c499 and
1355 are all roots of cones, affording no opportunities for further reduction (note that
these two circuits are already very simple and easy to diagnose).

We now investigate the effect of gate cloning on diagnostic performance. To isolate
the effect of gate cloning we use the baseline version of SDC (i.e., without abstraction).
Table 4.3 summarizes the performance of baseline SDC with cloning on the circuits
c432 and ¢880. Comparing these results with the corresponding entries in Table 3.2
shows that the overall diagnostic cost is only slightly affected by cloning. We further
observed that in a significant number of cases, the proposed measurement sequence
did not change after cloning, while in most of the other cases it changed only insub-
stantially. Moreover, in a number of cases, although a substantially different sequence
of measurements was proposed, the actual diagnostic cost did not change much. Fi-
nally, note that the diagnosis time in the case of ¢432 has reduced after cloning, which
can be ascribed to the general reduction in the complexity of compilation due to a

smaller abstraction.

Our final set of experimental results, summarized in Table 4.4, illustrates the per-
formance of hierarchical sequential diagnosis with gate cloning—the most scalable
version of SDC. All the test cases for circuits c1908 and 2670 were now solved, and the
largest circuits in the benchmark suite could now be handled: All the cases for ¢5315,
165 of the 300 cases for ¢3540, and 157 of the 300 cases for ¢7552 were solved. In terms
of diagnostic cost, cloning generally resulted in a slight improvement. In terms of
time, the difference is insignificant for c432 and ¢880, and for the larger circuits (¢1908

and ¢2670) diagnosis with cloning was clearly more than an order of magnitude faster.

54.4 Conclusions il

4.4 Conclusions

We have presented two new techniques that scale the sequential diagnosis to the
largest benchmark systems. Specifically, we first apply the abstraction based approach
to our sequential diagnosis method of Chapter 3. We then go a step further to reduce
the abstraction size of a system by a novel approach of gate cloning. The new tech-
niques allow us to diagnose for the first time almost all the circuits in the ISCAS-85

benchmark suite with good performance in terms of diagnostic cost.

72

Hierarchical Sequential Diagnosis

Chapter 5

Computing Most Probable

Explanations

This chapter is based upon work published in [Siddigi and Huang 2009]. Here we
present a new heuristic to dynamically order variables and their values in branch-
and-bound search for a common diagnostic query known as MPE. The structure of
this chapter is as follows: An introduction of the chapter is given in Section 5.1. We
formally define the problem of MPE and introduce some notation and definitions in
Section 5.2. We then review two types of exact methods for computing MPE in Sec-
tions 5.3 and 5.4, based on inference and search, respectively. The new heuristic is dis-
cussed in Section 5.5, followed by a comprehensive empirical analysis in Section 5.6.

Conclusions are drawn in Section 5.7.

5.1 Introduction

In Bayesian networks, an MPE is a most likely instantiation of all network variables
given a piece of evidence. Solving (the decision version of) an MPE query is NP-
hard [Shimony 1994].

When networks continue to grow in size and complexity, inference based methods
can fail to sovle MPE queries, particularly by running out of memory, and one resorts
instead to search algorithms. A search algorithm systematically goes through every as-
signment to network variables to find the one that has the highest probability. Search
only takes a linear amount of memory for its execution, but takes time exponential in
the network size due to exponential size space of assignments. A branch-and-bound
search can reduce this complexity by computing a bound on the probability of any
extension to a partial assignment, such that, if the bound becomes less than the best

solution found so far then the search can backtrack, knowing that the current partial

73

74 Computing Most Probable Explanations

assignment cannot lead to an optimal solution.

Choi et al. [2007] consider such a search technique that computes upper bounds
on the MPE using an approximation of the network obtained through node splitting.
Instead of all the network nodes, search is applied on a smaller set of nodes, known
as split nodes, and the search time may be exponential only in the number of split
nodes. Hence the efficiency of this approach depends on the number of split nodes,
the quality of bounds, and the difficulty of computing the bounds. Therefore they
have compared the perforamance of two heuristics for splitting nodes, where one,
based on jointrees, tries to minimize the number of split nodes and generate a signif-
icantly easier network, which can also compromise the quality of bounds. The other,
based on mini-buckets, tries to minimize the relaxation in the bounds, which may not
generate significantly easier network. They have shown that jointree-based heuristic
leads to orders of magnitude performance improvement on hard networks compared
to the one based on mini-buckets.

However, Choi et al. [2007] have not addressed the impact of variable and value
ordering on the efficiency of this approach. In this chapter we have taken the initia-
tive to study various heuristics for variable and value ordering in pursuit of enhancing
the scalability of this technique. We show that our new heuristics further improve ef-
ficiency significantly, extending the reach of exact algorithms to networks that cannot

be solved by other known methods.

5.2 Notation and Definitions

We start with a formal definition of MPE. Let N be a Bayesian network with variables

X, a most probable explanation for some evidence e is defined as:
MPE(N; e)i=95" ‘ang @ ie PN

where x ~ e means that the assignments x and e are consistent, i.e, they agree on every

common variable. We will also write MPE,(N, e) to denote the probability of the MPE
solutions.

MPE queries involve potentially maximizing over all (uninstantiated) network
variables, and are known to be NP-hard in general [Shimony 1994].

Before we discuss the various techniques used to solve MPE queries on a Bayesian

network we define some helpful terms.

65.2 Notation and Definitions 75

T A IR A
] 0.24

I 0 0
(OR] 0.36
0 © 0.24

Figure 5.1: Maximizing out S from the factor in Figure 3.2.

Definition 5.2.1 (Factor)
A factor is a function over a set of variables X, mapping each instantiation of these

variables to a non-negative number, denoted as f(x).

For example every CPT of a Bayesian network is a factor, and so is the joint prob-
ability distribution in Figure 3.2. Assuming that a factor is represented in the form of
a table its size is exponential in the number of its variables.

We now define two operations applicable on factors.

Definition 5.2.2 (Maximizing out)

Let f(x) be a factor over variables X and let X be a variable in X. Maximizing out the
variable X from f results in a another factor maxxf over variables Y = X\{X}, which is
defined as follows:

£

(maxxf)(y) =97 max,f(xy)

For example, maximizing out S from the factor in Figure 3.2 results in the factor in

Figure 5.1.

Definition 5.2.3 (Multiplying)

Let f(x) and g(y) be two factors over variables X and Y, respectively, sharing variables
S = X N'Y. Multiplying f and g results in a factor fg over variables Z = X UY by
combining, in the new factor, those instan tiations of X and Y that agree on variables
S, which map to numbers obtained by multiplying the numbers corresponding to

instantiations being combined in their respective factors, i.e.

(fg)(z) =" f(x)g(y)
where x and y are compatible withz, i.e. x ~z,Z ~y.

For example, the factor in Figure 3.2 is the result of multiplying the three factors
shown in Figure 3.3.
The complexity of maximizing out is linear in the size of the given factor, whereas

that of multiplying is linear in the size of the resulting factor.

76 Computing Most Probable Explanations

Note that the given evidence can be represented as a set of factors each defined
over a single variable that appears in the evidence. The instantiation of the variable in
the factor that appears in the evidence maps to 1, and every other instantiation maps

to 0.

5.3 Computing MPE by Inference

Given a Bayesian network and a piece of evidence, a naive method of computing the
MPE for the evidence is to multiply together all the network CPTs and the evidence
factors, which gives us a single factor that represents the joint probability distribution
over all network variables, under the given evidence. The MPE can then be computed
by maximizing over all the variables in the resulting factor. However, such an ap-
proach would have complexity exponential in the number of network nodes and will
not be feasible in practice.

We discuss two most commonly used methods for exact MPE based on inference
that are relevant to the current discussion. They provide a bound on the complexity of
solving the MPE query, and make it possible to solve larger networks. In the following
discussion we focus on computing the probability of the MPE. However, the actual

MPE can also be computed by some extra book-keeping.

5.3.1 Variable Elimination

The key observation behind this approach is the result that if f and g are two factors,

and X appears only in g, then

flgi= !
m)?x(g) fm)?xg

The above result allows the operations of multiplication and maximization on the
set of factors to be performed incrementally. Specifically, given a set of factors and
the task of maximizing out a variable X, one only needs to multiply those factors that
mention X and then maximize out X from the resulting factor. The resulting factor
then replaces the factors that participated in the process from the given set, which
eliminates X. The same is repeated for all the variables, and when all variables have
been eliminated any remaining factors are multiplied together to get a single factor

that contains only a single number against an empty instantiation representing the
probability of the MPE. This process is called variable eliminiation.

5.4 Computing MPE by Systematic Search i

We have the following complexity result: The complexity of variable elimina-
tion is dominated by the largest factor obtained during the elimination process, or
alternatively, exponential in the treewidth of the elimination order (introduced in Sec-
tion 2.2.1).

One particular implementation of variable elimination is bucket elimina-
tion [Dechter 1996], which provides the convenience of not having to search in the
set of factors for those that mention a particular variable X, by placing the factors in
an order. Specifically, each variable is associated with a bucket and buckets are given
the same order as the elimination order. The factors are distributed to buckets such
that a factor is placed in the first bucket (according to the order) whose variable is
mentioned in the factor. When variable X is processed, the set of factors in its bucket
are multiplied and X is maximized out, the resulting factor is then placed in the first

proceeding bucket whose variable is mentioned in it.

5.3.2 Compilation

A more recent approach is based upon compilation of a network into arithmetic cir-
cuit, which was discussed in Section 3.1.3.2. Once a network has been compiled MPE
for any evidence can be computed in time linear its size. Specifically, after the ev-
idence has been set in the arithmetic circuit, it is evaluated bottom-up by treating
every addition node as a maximization node. The value at the root node gives the
probability of the MPE. The size of the arithmetic circuit may be exponential only in
the treewidth of the network. However, we have discussed in Section 3.1.3.2 that com-
pilation is known to exploit local structure so that complexity of compilation may be
further reduced [Chavira and Darwiche 2005], and is exponential in the treewidth in
the worst case only.

When networks continue to grow in size and complexity both the above men-
tioned methods can fail, particularly by running out of memory, and one resorts in-
stead to either computing an approximate MPE or using algorithms based on systern-
atic search. In the following we discuss the search based approach and show how it

can be combined with approximation to gain efficiency.

54 Computing MPE by Systematic Search

A search method for computing exact MPE would systematically search amongst all

the assignments to the network variables to select the most probable assignment. This

78 Computing Most Probable Explanations

can be done by performing a depth-first search in the tree of assignments to network
variables where the leaf nodes correspond one-to-one to complete instantiations of
variables, and internal nodes correspond (one-to-one) to partial instantiations of vari-
ables. The outgoing edges from a tree node correspond to the possible instantiations
of a variable. The probability of an instantiation can be computed using the chain rule
in time linear in the number of network nodes. However, such a method would have
complexity exponential in the network variables.

The complexity of search can be reduced if one is able to find an upper bound on
the probability of any extension to the current partial assignment. Specifically, one can
always backtrack when the upper bound becomes less than or equal to the current best
solution, meaning that such a partial assignment would not lead to a better solution.
This kind of search is called branch-and-bound search and is discussed later. First we

discuss how such a bound can be computed.

54.1 Computing Bounds using Mini-Buckets

When an MPE query with respect to a network cannot be solved in the given memory
a well-known approximation strategy known as mini-buckets [Dechter and Rish 2003],
based on bucket elimination, can ignore certain dependencies amongst variables so
that the new network becomes easier to solve and yet its solution can only “go wrong”
in one direction, that its solution is always greater than or equal to that for the orig-
inal network. Specifically, when processing a bucket of a variable X if it is not pos-
sible to compute the factor maxx(f(x)g(y)) (where X appears both in X and Y) be-
cause of insufficient available memory, then one can push maximization inside the
multiplication, i.e. maxxf(x) - maxxg(y). This gives the upper bound on the so-
lution of maxx(f(x)g(y)), as for any two non-negative functions maxx(f(x)g(y)) <
maxxf(x) - maxxg(y).

This approach is called mini-buckets as it virtually splits a bucket into two or more
mini-buckets. In the above example the bucket of X gets splitinto two buckets contain-
ing factors f(x) and g(y), respectively. The factors obtained by performing maximiza-
tion on each mini-bucket are placed in the next proceeding bucket in the same manner
as in bucket elimination, and the next bucket is processed. As more mini-buckets are
created the efficiency of bucket elimination as well as the quality of solution decreases.

Choi et al. [2007] formulate mini-buckets in a more general setting known as node
splitting, of which mini-buckets is a special case, and use approximate solutions as

upper bounds to prune a branch-and-bound search for an exact MPE. They also show

$5.4 Computing MPE by Systematic Search 79

(a) (b)

Figure 5.2: An example of node splitting.

that search may only be exponential in a much smaller set of split variables in the worst
case. While mini-buckets focuses on generating better quality solutions, node splitting
focuses on generating good network relaxations that reduce the number of split vari-
ables. Moreover, such an approximation can be used in conjunction with any exact
inference algorithm—not just variable elimination—to solve MPE. In particular, they
have shown that by replacing variable elimination with compilation, it is possible to
improve search efficiency by orders of magnitude on hard networks.

In this following we review the search framework based on node splitting pro-

posed in [Choi et al. 2007], which provides the basis for our new contributions.

5.4.2 Computing Bounds using Node Splitting

Node splitting creates a clone X of a node X such that X inherits some of the children

of X. Formally:

Definition 5.4.1 (Node Splitting)
Let X be a node in a Bayesian network N with children Y. We say that X is split

according to children Z C Y when it results in a network N’ that is obtained from N

as follows:
e The edges outgoing from X to its children Z are removed.

e A new root node X with a uniform prior is added to the network with nodes Z

as its children.

80 Computing Most Probable Explanations

A special case of splitting is when X is split according to every child, in which case
X is said to be fully split. Figure 5.2 shows an example where Y has been split according
to both of its children X and Z, and V;, \73 are clones of Y.

If e is an assignment to variables in network N, we write e ' to denote the com-
patible assignment to their clones in N’, meaning that a variable and its clones (if any)
are assigned the same value. For example, if e = {Y =y}, thene " = (V1=vy,Y2=vu).

An interesting property of a split network is that the probability of the MPE with
respect to the split network gives us an upper bound on the probability of the MPE

with respect to the original network, after normalization. Formally:
MPEp(N\ E) S BMPEP(N/‘ e e ¢]

where 3 is a constant equal to the total number of instantiations of the clone variables.
For example, suppose that in the network of Figure 5.2a, variables have binary do-
mains and Pr(Y = y) = 0.6, Pr(Y = §) = 0.4; all the parameters in the CPTs of X and
Z are 0.5; and e = {Y = y}. Recall that both Y;,Y, are given uniform priors. Then
MPE,,(N,e) = 0.10 and MPE,(N',e,e ") = 0.025. The value of B is 4 in this case and
we have MPE (N, e) <4 x0.025.

In this example the upper bound equals the exact solution. In general, this is guar-
anteed if all the split variables have been instantiated in e (and their clones in e).
Hence to find an exact MPE one need only search in the space of instantiations of the
split variables, as opposed to all network variables. At leaves of the search tree, solu-
tions computed on the relaxed network give candidate MPE solutions, and elsewhere

they give upper bounds to prune the search.

5.4.2.1 Branch-and-Bound Search

Algorithm 5.4.1 formalizes such a branch-and-bound search (this code only computes
the MPE probability; however the actual MPE can be recovered with minor book-
keeping). The procedure receives a split network N’ and the evidence e. At each call
to BNB-MPE, the bound BMPE(N’ e, e ') is computed (line 1). If the bound becomes
less than or equal to the current solution (line 2), meaning that any further advance-
ment in this part of the search tree is not going to give a better solution, the search
backtracks. Otherwise, if the bound is greater than the current solution and the cur-
rent assignment is complete over split variables, meaning that the bound has become

exact, the current solution is replaced with the better one (lines 3-4). If the assignment

5.5 Variable and Value Ordering for MPE Search 81

Algorithm 5.4.1 BNB-MPE : Computes probability of MPE for evidence e
procedure BNB-MPE (N e)
inputs: {N : split network}, {e : network instantiation}
global variables: {Y : split variables}, {5 : number of possible assignments to clone variables}
1: bound = BMPE(N’ e,e ')
2: if bound > solution then

3: if eis complete instantiation of variables Y then
4 solution = bound /* bound is exact */
5 else

6: pick some X € Y such that X ¢ E

7 for each value x; of variable X do

8: e —eU{X =xi]

9: BNB-MPE (N’ e)
10: e — e\{X =xq}
1% end for
112: end if
13: end if

is not complete then an unassigned split variable X is chosen (line 6), e is appended
with the assignment X = x; (line 7), and BNB-MPE is recursively called (line 8). After
the recursive call returns the assignment X = x; is removed from e and other values

of X are tried in the same way.

5.4.2.2 The Chioce of Variables to Split

The choice of which variables to split (variables Y in the pseudocode) has a funda-
mental impact on the efficiency of this approach. More split variables may make
the relaxed network easier to solve, but may loosen the bounds and increase the
search space. Choi et. al [2007] studied a strategy based on jointree construc-
tion [Dechter 2003]: A variable is chosen and fully split that can cause the highest
reduction in the size of the jointree cliques and separators. Once a variable is fully
split a jointree of the new network is constructed, and the process repeated until the
treewidth of the network drops to a preset target. This heuristic was shown to out-
perform the mini-buckets heuristic in [Choi et al. 2007], and is therefore used in our
present work. Also, given the success reported in [Choi et al. 2007] we will use com-

pilation as the underlying method for computing MPEs of relaxed networks.

5.5 Variable and Value Ordering for MPE Search

An important aspect of perhaps any search algorithm is the quality of variable and
value order which can have significant impact on the efficiency of the search. Choi

et al. [2007] have used a neutral heuristic and left this aspect unaddressed. Given

82 Computing Most Probable Explanations

the advancements already reported in their work based on combining splitting strate-
gies with new inference methods, one cannot but wonder whether more sophisticated
variable and value ordering might not take us even farther.

We have thus undertaken this investigation and now take delight in reporting it
here. The first type of heuristic we examined is based on computing the entropies of
variables, and the second on a form of learning from nogoods. We will discuss some
of our findings, which have eventually led us to combine the two heuristics for use in

a single algorithm.

5.5.1 Entropy-based Ordering

We start by revisiting the notion of Shannon’s entropy &, as given in Section 3.2.2,
which is defined with respect to a probability distribution of a discrete random vari-

able X ranging over values x1, X, . .., X). Formally:
k
E(X) ==Y Pr(X=x;)logPr(X =x).
i=1

Entropy quantifies the amount of uncertainty over the value of the random variable.
It is maximal when all probabilities Pr(X = x;) are equal, and minimal when one of
them is 1.

Hence as a first experiment we consider a heuristic that favors those instantiations
of variables that are more likely to be MPEs. The idea is that finding an MPE earlier
helps terminate the search earlier. To that end, the heuristic prefers those variables
that provide more certainty about their values (i.e., have smaller entropies), and favor
those values of the chosen variable that are more likely than others (i.e., have higher
probabilities).

This heuristic can be used in either a static or dynamic setting. In a static setting,
we order the split variables in increasing order of their entropies, and order the values
of each variable in decreasing order of their probabilities, and keep the order fixed
throughout the search. In a dynamic setting, we update the probabilities of the split
variables at each search node and reorder the variables and values accordingly.

The heuristic requires computing the probabilities of the values of all split vari-
ables, which can be obtained conveniently as we have already assumed that the split
network will be compiled for the purpose of computing its MPE—the compilation,
in the form of arithmetic circuits, admits linear-time procedures for obtaining these

probabilities. Since a variable and its clones can now get values independent of each

§5.5 Variable and Value Ordering for MPE Search 83

other, the computed probabilities for a variable may be inaccurate. Suppose that we
have computed the probability of a value of a variable and the probabilities of the
same value of its clones with respect to the split network. Out of these some will be
closer to the probability with respect to the original network. Therefore, in an attempt
to improve the accuracy of the probabilities, we take the average of the probabilities
of a split variable and its clones (for the same value) when evaluating the heuristic.
While we will present detailed results in Section 5.6, we note here that our initial
experiments clearly showed that a static entropy-based ordering immediately led to
significantly better performance than the neutral heuristic. On the other hand, the
dynamic version, although often effective in reducing the search tree, turned out to be

generally too expensive, resulting in worse performance overall.

5.5.2 Nogood-based Ordering

Hence we need to look further if we desire an effective heuristic that remains inexpen-

sive in a dynamic setting. Here the notion of learning from 10goods comes to rescue.

5.5.2.1 Nogoods

In the constraint satisfaction framework where it was originally studied, a nogood is a
partial instantiation of variables that cannot be extended to a complete solution. In
our case, we define a nogood to be a partial instantiation of the split variables (i.e.,
search variables) that results in pruning of the node (i.e., the upper bound being < the
current best candidate solution).

Note that at the time of pruning, some of the assignments in the nogood g may
contribute more than others to the tightness of the bound (and hence the pruning of
the node), and it may be possible to retract some of those less contributing assign-
ments from g without loosening the bound enough to prevent pruning. That is, an
assignment X = x can be removed from g if after removing it from g the upper bound
remains < to the current best candidate solution. These refined nogoods can then be
learned (i.e., stored) so that any future search branches containing them can be imme-
diately pruned.

Nogood learning in this original form comes with the significant overhead of hav-
ing to re-compute bounds to determine which assignments can be retracted, which is
confirmed by experiments given in Section 5.6. However, it gives us an interesting

motivation for an efficient variable and value ordering heuristic described below.

84 Computing Most Probable Explanations

5.5.2.2 Ordering Heuristic

The idea is to favor those variables and values that can quickly make the current as-
signment a nogood, so that backtracking occurs early during the search. Hence we
give scores to the values of variables proportionate to the amounts of reduction that
they cause in the bound, and favor those variables and values that have higher scores.

Specifically, every value x; of a variable X is associated with a score S(X = xi),
which is initialized to 0. The score S(X) of the variable X is the average of the scores
of its values. Once a variable X is assigned a value x;, the amount of reduction in the
bound caused by it is added to the score of X = x;. That is, the score SIXE=txis
updated to be S(X = x;) + (cb —nb), where cb is the bound before assigning the value
xi to X and nb is the bound after the assignment. The heuristic chooses a variable
with the highest score and assigns values to it in decreasing order of the scores of
those values.

During initial experiments we observed that over the course of the search the
scores can become misleading, as past updates to the scores may have lost their rel-
evance under the current search conditions. To counter this effect, we reinitialize the
scores periodically, and have found empirically that a period of 2000 search nodes
tends to work well.

Finally, we combine this heuristic with the entropy-based approach by using the
entropy-based static order as the initial order of the variables and their values, so
that the search may tend to start with a better candidate solution. We now proceed
to present an empirical study which shows, among other things, that this combined

heuristic gives significantly better performance both in terms of search space and time.

5.6 Experimental Results

In this empirical study we evaluate the different heuristics we have proposed, and in
particular show that with the final combined heuristic we achieve significant advances
in efficiency and scalability, able to solve problems that are intractable for other known
methods.

We conducted our experiments on a cluster of computers consisting of two types
of (comparable) CPUs, Intel Core Duo 2.4 GHz and AMD Athlon 64 X2 Dual Core
Processor 4600+, both with 4 GB of RAM running Linux. A memory limit of 1 GB was
imposed on each test case. Compilation of Bayesian networks was done using the

C2D compiler [Darwiche 2004; Darwiche 2005]. We use a trivial seed of 0 as the initial

85.6 Experimental Results 85

cases solved common cases

networks|cases| NG-DVO SC-DVO NG-DVO [[SC-DVO
solvedltime[spacelnogoodsfpruned|jsolved]time[space|ftime[space|[imefspace
Ratio50 | 90 || 77 [89.5[2337] 875 576 90 |[33.2[3365]|89.5]2337]] 7.7 | 1218
Ratio 75| 150 || 108 [74.8{3202] 1019 | 1159 [139 |[49.7[14875]|74.8[3202]] 3.4 [1648
Ratio 90 | 210 || 135 [42.3[6161] 873 | 4413 [[160 |26.2[13719][42.3]6161 || 1.6 1402

Table 5.1: Comparing nogood learning with score-based DVO on grid networks.

cases solved COMmon cases
networks|cases ENT-DVO ENT-SVO SC-DVO ENT-DVO [[ENT-SVO][SC-DVO
solvedJtimefspace|jsolved[time[space[[solved[time]space|[time]space|[time[space|time[space
Ratio 50 {2250 1890 [95.7[6286 || 2121 |51.6| 8262 || 2248 |25.9]2616 |[94.1]6215([24.3]4619 (| 7.3 | 1082
Ratio 75 [3750]| 2693 [60.3[5195 | 3015 [40.4[15547|| 3624 [38.0{10909(|57.2{4965 [[15.3]6722[1.6 | 712
Ratio 90 [5250]| 3463 [23.4]2387 || 3599 [22.2[12919]] 3995 | 8.2 [4453]]20.0{2102[{10.0] 6740 0.3 | 275

Table 5.2: Results on grid networks.

MPE solution to start the search. In general, we keep splitting the network variables
until treewidth becomes < 10, unless otherwise stated.

We used a variety of networks: the grid networks introduced in [Sang et al. 2005],
a set of randomly generated networks as in [Marinescu et al. 2003], networks for ge-
netic linkage analysis, and a set of 42 networks for decoding error-correcting codes
as generated in [Choi et al. 2007]. The last group were trivial to solve by all the three
heuristics, so we do not report results for them.

For each heuristic, we report the number of cases solved, search time, and search
space, where the search space are time are averages over solved cases. We also com-
pare the performance of heuristics on those cases that were solved by all heuristics. As
a reference point, we generated a random static variable and value order for the split
variables in each split network instance and compared all the heuristics against it. The
comparison showed that the new heuristics generally provide many orders of magni-
tude savings in search time and space over the random heuristic, and hence we will
only include the new heuristics in the presented results. Finally, we will write SVO and

DVO as shorthand for static and dynamic variable and value ordering, respectively.

5.6.1 Grid Networks

We first use these networks to show, in Table 5.1, that the score-based dynamic order-
ing (referred to as SC-DVO) outperforms nogood learning itself. For this purpose, we
consider a similar dynamic ordering referred to as NG-DVO in the table. This heuristic
starts with the same initial order, uses the same method of variable and value selec-
tion, and also reinitializes the scores after the specified period. However, the scores

are updated as follows: When a nogood is learned, the score is incremented for each

86 Computing Most Probable Explanations

27500

25000 [\
22500 B entropy based dvo*;

¢ entropy based svo 1‘

20000 V score based dvo /

|
17500

15000
12500

search space

10000
7500
5000

2500
oi ey

12345678911111111112222222222333333333344444444445
01234567890123456789012345678901234567890

splits

"1v¥V¥’ ¥y

T

Figure 5.3: Comparing search spaces on grid networks.

literal in the nogood. We compare the performance of both techniques by computing
the MPE for the empty evidence on each network. For NG-DVO we also report the
average number of nogoods learned and the average number of branches pruned by
nogoods. The results clearly show that score-based DVO is significantly faster than
nogood learning and results in a much reduced search space.

We then show that the score-based DVO performs consistently better than other
heuristics when the number of splits in a network is varied. For this purpose, we
consider only 80 instances of these networks, in the range 90-20-1 to 90-30-9, which
are some of the harder instances in this suite. The treewidths of these instances range
from high twenties up to low forties. However, all of them can be compiled with a
single split using the strategy mentioned above.

For each instance we split the network using 1 up to 50 splits, making a total of
50 + 80 = 4000 cases to solve. For each case we compute the MPE for the empty
evidence under a time limit of 15 minutes. The entropy-based DVO solved 3656 cases,
entropy-based SVO solved 3968 cases, and score-based DVO solved 3980 cases, where
the score-based DVO solved all those cases solved by the others. We plot a graph

of search space against the number of splits, and a graph of search time against the

5.6 Experimental Results 87

180
170
160
150
140
130
120 ,
110 'n B - g
100 N |
90 "
80 s
70 |
60 on
50 w0
. \
40 i R
30 i
20 .
10

B entropy based dvo l.. 3!
4 entropy based svo -.
¥ score based dvo 3] B

search time

Mx YYVYYVVVVY

12345678911111111112222222222333333333344444444445
01234567890123456789012345678901234567890

splits

Figure 5.4: Comparing search times on grid networks.

number of splits. Each of data point on the graphs is the average of search spaces/time
for those queries solved by all three heuristics.

In Figure 5.3, we observe that, interestingly, entropy-based sVO can often perform
significantly better than entropy-based DVO, although its search space starts to grow
faster than the DVO when the number of splits increases. This can be ascribed to the
fact that DVO can exploit the changing probabilities of variables during search. The
most significant result, however, is that for any number of splits the search space of
score-based DVO is generally much smaller than that of the other two, and can become
orders of magnitude smaller when the number of splits grows.

In Figure 5.4, we observe that entropy-based DVO gives poor performance, ap-
parently because it has to do expensive probability updates at each search node.
Again, we note that the score-based DVO is generally much faster than the other
two heurstics, and can become orders of magnitude faster when the number of splits
GIrOWS.

To further assess the performance of heuristics on a wide range of MPE queries,
we considered the whole suite of grid networks and randomly generated 25 queries

for each network. The results, summarized in Table 5.2, again confirm that the perfor-

88 Computing Most Probable Explanations

cases solved common cases

size ENT-DVO ENT-SVO SC-DVO ENT-DVO || ENT-SVO SC-DVO

solved[time[space|[solved[time[space[[solved[time[space|[time[space|[time[space|/time[space
100f] 20 |[131| 867 200 [47 | 696 208 [E31n|E532%| FISTR(ES6 7| (R 7|6 964 | |R31E [E5B 2

0|20 [F187Z1 i 800|205 [FZ0E 12701 20 5s[F6 7 F 9527 [F8 72 [f18 00| [EZ0N i1270)| N6 78 [E952

120([19 [923[93741 20 [471[7760(] 20 |210]3061 || 9239374 [[434 [7640 || 188 | 2950
130]] 12 [1100[10849|[15 |[1100[19755|| 18 |561 | 7462 [[1100[10849] 729 [11168|| 291 | 3989
140]] 7 [1715[19621]] 11 [1340[28574|| 15 [1090]10545[[1680[20016[741 [17965(| 311 | 4529
150 1 [2505/10800]] 6 [1859]41628|| 15 [1619]25293][2505[10800]] 809 | 8727 || 634 | 6789
160 O el |[aves 1 [2379]22428|| 6 [2257|36884(|n.a.| n.a. |[[n.a.| n.a. |[[n.a.| n.a.
170 2 0.1 0 2 0.1 0 3 637 [14319[| n.a. | n.a. {|n.a.| n.a. [[n.a.| n.a.

Table 5.3: Results on random networks.

mance of entropy-based DVO is significantly better than that of the other two heuris-

tics.

5.6.2 Randomly Generated Networks

Next, to evaluate the scalability of the heuristics we tried them on a number of
randomly generated networks of increasing size and treewidth, according to the
model of [Marinescu et al. 2003]. Networks are generated according to the parame-
ters (N, K, C, P), where N is the number of variables, K is their domain size, C is the
number of CPTs, and P is the number of parents in each CPT. The network structure
is created by randomly picking C variables out of N and, for each, randomly select-
ing P parents from the preceding variables, relative to some ordering. Each CPT is
generated uniformly at random. We used C = 90%N, P = 2, K = 3, and N ranging
from 100 to 200 at increments of 10. The treewidths of these networks range from 15
to 33, and generally increases with N. For each network size we generated 20 network
instances, and for each instance generated a random MPE query, making a total of 20
queries per network size. The time limit to solve each query was set to 1 hour.

The results of these experiments are summarized in Table 5.3. The score-based
DVO solved all those cases that the other two could solve, plus more, and scales much
better when the network size increases. On cases solved by all three, the performance

of score-based DVO is also the best in terms of both search time and space.

5.6.3 Networks for Genetic Linkage Analaysis

We now consider even harder cases from genetic linkage analysis
(http:/ /bioinfo.cs.technion.a.c.il/superlink /). We extracted 8 networks that have
high treewidths and cannot be compiled without splitting, and considered 20 ran-

domly generated MPE queries on each of them, for a total of 160 queries. Since these

5.6 Experimental Results 89

network | treewidth | splits [— = &0 o) :

solved [time | space
pedigreel3 43 83 20 [1728 | 168251
pedigreel9 36 59 12 | 6868 | 532717
pedigree3] 44 84 16 | 6672 | 446583
pedigree34 35 7 128(151091(§882899
pedigree40 B7 72 2 6575 | 745088
pedigree4] 43 84 9 7517 | 783737
pedigree44 88 54 5 7041 | 673165
pedigree5] 54 75 16 | 3451 [268774

Table 5.4: Results on networks for genetic linkage analysis.

cases solved time on common cases
networks|cases|| Samlam SC-DVO

Samlam SC-DVO

solved[time[solved|time
Ratio 50 | 90 49 123.8| 90 [31.1 23.8 14
Ratio 75 | 150 45 [14.1| 148 [185.4| 14.1 0.3
Ratio 90 | 210 48 [189| 169 [114.5]] 18.9 0.1

Table 5.5: Comparison with Samlam on grid networks.

networks are significantly harder, the time limit on each query was set to 4 hours.
The results on these networks are summarized in Table 5.4. We report the esti-
mated treewidths of the networks and the number of splits performed on each of
them, and only show results for score-based DVO, as the two entropy-based heuristics
could only solve 9 trivial cases when the MPE for the given evidence was already 0
and the search was not performed at all. The score-based DVO, by contrast, solved

most of the cases, which further establishes its better scalability.

5.6.4 Comparison with Other Tools

First we compare our MPE solver SC-DVO with an independent Bayesian network
inference engine known as Samlam (http:/ /reasoning.cs.ucla.edu/samiam/). As we
were unable to run Samlam on our cluster, these experiments were conducted on a
machine with a 3.2 GHz Intel Pentium IV processor and 2 GB of RAM running Linux.
For each network we compute the MPE for the empty evidence under a time limit of
1 hour.

The random and genetic linkage analysis networks proved too hard to be solved
by Samlam. For the grid networks, the results of the comparison are summarized in
Table 5.5. We observe that SC-DVO solved roughly from 2 to 3 times more instances
than Samlam, and on cases solved by both SC-DVO can also be orders of magnitude
faster.

We then compare SC-DVO with the best-first search algorithm (SMBBF) of

[Marinescu and Dechter 2007]. This tool is only available for Windows, and we used

90 Computing Most Probable Explanations

cases solved time on common cases
networks|cases SMBBF SC-DVO L e
solved[time [solved| time
Ratio50 | 9 7 15BN EsE] [E58Y 4.34
Ratio75 | 15 10 [16.16] 15 [199.11f] 16.16 2]
Ratio 90 [15 I0RRi7323 s R8s R 782 0.429

Table 5.6: Comparison with SMBBF on grid networks.

a machine with an Intel Core 2 Duo 2.33 GHz and 1 GB of memory running Win-
dows. Note that our solver SC-DVO was run on a cluster with comparable CPU speeds.
However, since Windows reserves some of the memory for the operating system, we
accordingly reduced the memory limit for SC-DVO from 1 GB to 768 MB for these ex-
periments. Again a time limit of 1 hour was imposed for each query, computing the
MPE for the empty evidence .

SMBBF requires a parameter i that bounds the mini-bucket size. The results of
[Marinescu and Dechter 2007] do not appear to suggest any preferred value for {;
hence we somewhat arbitrality set i = 20 taking into account the relatively high
treewidth of our benchmarks.

Due to limited computational resources we used a sample of the grid networks
under each ratio category such that each selected network represented a class of net-
works comparable in difficulty. The comparison of is shown in Table 5.6. In contrast
to SC-DVO, SMBBF failed to solve a significant number of the networks; it was also
slower on the networks that were solved by both.

Finally, from the random networks we arbitrarily took 4 networks of size 100, 110,
120, and 130, respectively, and from the networks for genetic linkage analysis we took
pedigreel3, the apparently easiest one. None of these instances could be solved by
SMBBF, which quicky ran out of memory and got terminated by the operating system.
By contrast, SC-DVO solved all of them.

5.7 Conclusions

We have presented a novel and efficient heuristic for dynamically ordering variables
and their values in a branch-and-bound search for MPE. A comprehensive empiri-
cal evaluation indicates that significant improvements in search time and Space are
achieved over less sophisticated heuristics and over an existing Bayesian network in-
ference engine. On the whole, we have extended the reach of exact MPE algorithms to

networks that are now solved for the first time, particularly the very high treewidth
pedigree networks mentioned in table 5.4.

Chapter 6

Related Work

In this Chapter, we differentiate our techniques from related work of two types: struc-

tural methods and probabilistic methods.

6.1 Structural Methods

These techniques include [Smith et al. 2004] that exploits structural dominators of
the circuit to make the diagnosis more efficient, and [Chittaro and Ranon 2004;

Feldman and van Gemund 2006] that use structure-based hierarchical methods.

6.1.1 Diagnosis using Boolean Satisfiability

Smith, Veneris and Viglas [2004] use satisfiability (SAT) solvers as the reasoning sys-
tem to find faults in ISCAS-85 and ISCAS-89 circuits. They are also able to exploit
structural dominators of the circuit to make the diagnosis more efficient, which is
similar to our approach of Chapter 2. Below we describe their approach, and then
outline the similarities and differences with our work.

The health of a gate G is modeled by a multiplexer M, injected ahead of each gate.
Specifically, the output of G is connected to an input of M, whereas the other input of
M is not connected, which is considered to be the dummy output of G used when the
gate must be faulty, and can take arbitrary value. The output of M is considered to be
the output of G, and is connected to all those points where G was originally connected.
The selection line S of M selects between the original (healthy) or the dummy (faulty)
output of G. The gate whose multiplexer selects the faulty line is considered to be
broken. The resulting circuit is encoded into CNF and a SAT solver is used to find
a satisfying assignment to all the variables, which when projected over the selection
lines of the multiplexers gives a diagnosis. To find multiple diagnoses, an extra clause

that prevents the same diagnosis being found again is added to the database of the

91

92 Related Work

SAT solver and the solver is then forced to backtrack. The cardinality of the diagnoses
is enforced, before the diagnosis starts, through an additional adder circuit involving
the selection lines with a comparator to compare against the desired cardinality, such
that as soon as the cardinality of the diagnosis increases the desired cardinality the
solver backtracks. To improve the performance, the task is divided into two phases. In
the first phase, multi-plexers are injected only at the structural dominators of circuit.
In the second pass, the faults are found in their respective fan-in cones.

With respect to exploiting the circuit structure the technique has similarities to our
approach. However, the authors report results on only single and double stuck-at
faults, which are generally easier to handle. Our approach does not depend on any
prior assumptions about the cardinality of fault and can handle faults of arbitrary

cardinality.

6.1.2 Hierarchical Methods

Chittaro and Ranon [2004] propose a new formalism for hierarchical diagnosis based
on structural abstraction. The hierarchical decomposition of the system is created by
collecting subsets of components into single units, called aggregates. An aggregate
can be further decomposed into smaller aggregates representing different levels of
abstractions. First, a set of diagnoses at the most abstract level are computed, which
are then refined hierarchically to the most detailed level.

Similarly, Feldman and van Gemund [2006] develop a two-step hierar-
chical diagnosis algorithm and test it on reverse engineered ISCAS-85 cir-
cuits [Hansen et al. 1999] that are available in high-level form. The idea is to decom-
pose the system into hierarchies in such a way as to minimize the sharing of variables
between the aggregates. This can be done for well engineered problems and they
have formed hierarchies by hand for ISCAS-85 circuits. The hierarchy is represented
by a graph where each node in the graph represents an aggregate. Two aggregates are
connected by an edge if their components share variables. The depth of a hierarchy is
equal to the number of nodes in the longest path from the root of the hierarchy to a
leaf node. For example, a circuit with four cascaded buffer gates (A < B « C < D)
could be represented by a three node hierarchy having depth 3, containing compo-
nents NT:{A},N2:{B},N3: {C, D}, such that the node N1 is the root and is connected
to N2, whereas N2 is connected to N3.

When every aggregate is encoded into CNF, the system gets represented by a hi-

erarchical logical formula. In the above example, if we encode every gate without a

6.2 Probabilistic Methods 93

health variable then the three aggregates will be encoded as: N1: {(=A V B) A (A V
TBIEIN2 S {mB VAC) AMBN =C)}, N3 +{(=CVD)A(CV—=D)}. This representation can be
translated to a hierarchical DNF (Disjunctive Normal Form) of an adjustable depth: to
a fully hierarchical DNF, a fully flattened DNF, or a partially flattened DNF dictated
by a depth parameter. Specifically, each node is compiled into a DNF and then the
depth of the hierarchy can be reduced (if required) by multiplying (conjoining) nodes
and collapsing them to single nodes. In the above example when every node is com-
piled toa DNF we get: Nil:: {{AAB) Vi(=AA =B}, N2 : {((BAEC)Vi(=BA=C)); N3 :
((CAD)V (-CA—D)j. If the depth needs to be adjusted to 2 one can multiply N2
and N3 to get a single node: N2 x N3 : {(=BV C)A(BV—=C)A(=CVD)A(CV—D)}.

Thus a fully flattened representation contains a single node only where all the
nodes get multiplied together, and a fully hierarchical representation contains a single
component at every node. Once a hierarchical DNF has been obtained, a hierarchical
best-first search algorithm is employed to find diagnoses. Since a fully flattened rep-
resentation can be of exponential size, and the search in hierarchical representation
may take time exponential in the depth of the hierarchy, the idea is to adjust the depth
so that the formula may be compiled in hierarchical form within the given memory
limits and search performed in the given time limit.

The hierarchical aspect of these two approaches is similar to that of ours; however,
they require a hierarchical decomposition of the system to be either given as part of the
input, or obtained by hand, while our approach searches for hierarchies automatically.
Another major difference is that they consider only the computation of diagnoses and

do not address the problem of sequential diagnosis.

6.2 Probabilistic Methods

These techniques include [Varshney et al. 1982] that combine information theory and
heuristic search to generate optimal policies, [de Kleer 1992; de Kleer 2006] that are
related to GDE, methods that use a Bayesian network model of the system e.g.

[Heckerman et al. 1995; Flesch et al. 2007] as well as techniques to compute MPE.

6.2.1 Optimal Policies using Heuristic Search and Entropy

Varshney et al. [1982] have studied the application of heuristic search and informa-
tion theory on sequential diagnosis. They have used the heuristic search in AND/OR

graphs (e.g. AO* and CF algorithms) to generate optimal policies. The heuristic eval-

94 Related Work

uation functions (HEF) used at each search node to guide the search are constructed
using the entropy of diagnoses, which ensure that the policy generated by the algo-
rithm is always an optimal policy. On the bright side the technique can significantly
reduce the search space of optimal policies by the use of better HEFs. However an
HEF based on computation of entropy of diagnoses seems feasible only when the

number of diagnoses is small.

6.2.2 Focusing on Probable Diagnoses

To address the problem of computation explosion of GDE, de Kleer [1992] considers
focusing the processing of the GDE and its underlying reasoning engine to a smaller
set of most probable diagnoses. Hence the reasoning engine responsible for gener-
ating the conflicts and a set of diagnoses only considers the probable conflicts and
diagnoses, significantly reducing the computational cost. The technique allows the
diagnoses to be generated and measurement points computed for the largest circuits
in ISCAS-85 benchmark suite. The author does not report any results regarding the
diagnostic cost on these circuits. However, he does mention that the quality of the
measurements were compromised as the computed probabilities may be inaccurate.
By contrast, in our approach the probabilities can be computed exactly. Cloning does
affect the probabilities of variables but our experiments show that it often does not

affect the diagnostic cost in a significantly adverse manner.

6.2.3 Improving Probability Estimates to Lower Diagnostic Costs

Based on the GDE framework, de Kleer [2006] studies the sensitivity of diagnostic cost
to what is called the e-policy (introduced in Section 3.2.2), which is the policy that
quantifies how the posterior probabilities of diagnoses are to be estimated when GDE
computes its heuristic.

In our case, probabilities of diagnoses are not required at all, and the other proba-
bilities that are required can all be computed exactly by evaluating and differentiating
the d-DNNF. Nevertheless, our algorithm can be sensitive to the initial probabilistic

model given and sensitivity analysis in this regard may lead to interesting findings.

6.2.4 Decision-theoretic Troubleshooting

Heckerman, Breese and Rommelse [1995] propose a Bayesian network based sequen-

tial diagnosis system, which avoids the exponential space problem of generating “op-

56.2 Probabilistic Methods 95

timal sequences using decision trees” and attempts to approximate them using fault
probabilities that are computed from the Bayesian network model of the system. The
idea is to test a component for failure that has the highest probability of failure. If the
component is healthy, the probabilities are updated and the next component is tested.
If the component is actually faulty and replacing it brings the faulty system to normal
state, the process stops. Otherwise more tests are made to find other faults. A prior
assumption of a single fault is used; however the system is able to find multiple faults
by reiterating after a single fault has been found such that during the next iteration
again a single fault is assumed.

Our idea of testing the most likely failing component comes from this work. How-
ever, in this technique the testing of a component is considered a unit operation and
components are tested in decreasing order of their likelihood of failure, which is com-
puted assuming a single fault (this assumption could compromise the quality of the
measurement sequence in multiple-fault cases as the authors pointed out). In our case,
by contrast, the testing of each variable of a component is a unit operation, calling for
a more complex heuristic in order to minimize the number of tests; also, we do not
need to assume a single fault. Our work also goes further in scalability using a series

of structure-based techniques: compilation, abstraction, and component cloning.

6.2.5 Adding Uncertainty to Model-based Diagnosis

Recently, Flesch, Lucas and Weide [2007] proposed a new framework to integrate
probabilistic reasoning into model-based diagnosis. The framework is based upon
the notion of conflict measure, which originated as a tool for the detection of conflicts
between an observation and a given Bayesian network [Jensen 2001]. When a system
is modeled as a Bayesian network for diagnostic reasoning, it is possible to use this
conflict measure to differentiate between diagnoses according to their degree of con-
sistency with a given set of observations. This work, however, does not address the

problem of sequential diagnosis, i.e., locating actual faults by taking measurements.

6.2.6 Computing Most Probable Explanations

Popular exact techniques are bucket elimination (based on variable elimination),
DNNF compilation, systematic search and reduction to weighted MAX-SAT.

The complexity of Bucket elimination [Dechter 1996] is exponential in the
treewidth of the elimination order. Compilation has similar complexity; how-

ever, it is known to exploit local structure so that its complexity may be further

96 Related Work

reduced [Chavira and Darwiche 2005], and is exponential in the treewidth in the
worst case only. Both variable elimination and compilation can run out of mem-
ory when the treewidth is large. Search methods can often avoid this memory ex-
plosion. These inlclude branch-and-bound search (used in our work) and best-first
search [Shimony and Charniak 1991]. A more recent implementation of best-first
search [Marinescu and Dechter 2007] is empirically analyzed in Section 5.6 in com-
parison with our technique.

Another technique reduces the problem of computing MPE to the
well known problem of Weighted MAX-SAT (W-MAX-SAT) [Park 2002;
Pipatsrisawat and Darwiche 2007]. A weighted CNF is a CNF in which each
clause is associated with a number called its weight. W-MAX-SAT finds an in-
stantiation of the variables in the CNF such that the total sum of the weights of
the satisfied clauses is maximal, which can be done using a systematic search

method [Pipatsrisawat and Darwiche 2007].

Chapter 7

Conclusions and Future Work

We have demonstrated that it is possible to exploit the structure of a system to scale
diagnosis to those large systems which cannot otherwise be diagnosed. Specifically,
we have used a DNNF-based compilation approach that can exploit system structure
to compactly represent the functionality of the system and also allows common diag-
nostic tasks to be performed efficiently.

For a large system that cannot be compiled, we can obtain a structural abstraction
of it that can significantly reduce the number of components to be diagnosed, allow-
ing larger systems to be compiled and diagnosed in a hierarchical fashion. We are
able to compute a set of minimum-cardinality diagnoses of an abnormal system more
efficiently using abstraction.

The compilation also allows us to efficiently compute a novel heuristic to propose
measurement points, which enables us to locate actual faults in the system with low
cost. The heuristic that is based upon failure probabilities of component failures and
the entropies of system variables is scalable and can also be combined with abstraction
to diagnose larger systems.

For systems whose abstraction is still too large to compile, we employ a technique
of component cloning that modifies the structure of the system so that the size of
its abstraction reduces significantly, allowing it to be compiled and diagnosed. We
show that cloning allows measurement points to be computed for very large systems
without affecting the diagnostic cost in an adverse manner.

Finally, we apply the entropy-based approach to computing most probable ex-
planations in a Bayesian network using a branch-and-bound search algorithm. We
propose a heuristic for dynamically ordering search variables and their values that
significantly reduces the search space and time, is easy to compute, and enables us to
solve many networks for the first time.

Topics for future work include sensitivity of diagnostic cost to probabilities in the

97

98 Conclusions and Future Work

system model (which may be estimated from data), diagnosis with measurements of
varying costs, application of hierarchical approach to MPE search, and application
of techniques in this thesis to other probabilistic queries such as MAP (maximum a

posteriori hypothesis).

Bibliography

CHAVIRA, M. AND DARWICHE, A. 2005. Compiling Bayesian networks with local
structure. In Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI) (2005), pp. 1306-1312. (pp.6, 77, 96)

CHAVIRA, M. AND DARWICHE, A. 2008. On probabilistic inference by weighted
model counting. Artificial Intelligence 172, 6-7 (April), 772-799. (p. 40)

CHITTARO, L. AND RANON, R. 2004. Hierarchical model-based diagnosis based
on structural abstraction. Artificial Intelligence 155, 1-2, 147-182. (pp.91, 92)

CHOI, A., CHAVIRA, M., AND DARWICHE, A. 2007. Node splitting: A scheme for
generating upper bounds in Bayesian networks. In Proceedings of the 23rd Conference
on Uncertainty in Artificial Intelligence (UAI) (2007), pp. 57-66. (pp.6, 7, 8, 65,74, 78,
79,81, 85)

DARWICHE, A. 1998. Model-based diagnosis using structured system descrip-
tions. Artificial Intelligence Research 8, 165-222. (p.19)

DARWICHE, A. 2001. Decomposable negation normal form. Journal of the
ACM 48, 4, 608-647. (pp.4,7,13,14, 15,16, 53)

DARWICHE, A. 2002. A logical approach to factoring belief networks. In In Pro-
ceedings of the 8th International Conference on Principles of Knowledge Representation
and Reasoning (KR) (2002), pp. 409-420. (p.38)

DARWICHE, A. 2003. A differential approach to inference in Bayesian networks.
Journal of the ACM 50, 3, 280-305. (pp.7, 38, 48, 50, 51)

DARWICHE, A. 2004. New advances in compiling CNF into decomposable nega-
tion normal form. In Proceedings of the 16th European Conference on Artificial Intelli-
gence (ECAI) (2004), pp. 328-332. (pp. 16, 84)

DARWICHE, A. 2005. The C2D compiler user manual. Technical Report D-
147, Computer Science Department, UCLA. http://reasoning.cs.ucla.edu/c2d/.
(p-84)

DARWICHE, A. AND HOPKINS, M. 2001. Using recursive decomposition to con-

99

100 Bibliography

struct elimination orders, jointrees and dtrees. In Trends in Artificial Intelligence, Lec-
ture notes in Al (2001), pp. 180-191. Springer-Verlag. (p.16)

DARWICHE, A. AND MARQUIS, P. 2002. A knowledge compilation map. Artificial
Intelligence Research 17,229-264. (pp.3,4,7)

DE KLEER, . 1976. Local methods for localizing faults in electronic circuits. MI Al
Memo 394, Cambridge, MA. (p.11)

DE KLEER, J. 1992. Focusing on probable diagnosis. In Readings in model-based di-
agnosis, pp. 131-137. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
(pp-48, 93, 94)

DE KLEER, J. 2006. Improving probability estimates to lower diagnostic costs. In
17th International Workshop on Principles of Diagnosis (DX) (2006). (pp.5, 47, 93, 94)

DE KLEER, J., MACKWORTH, A. K., AND REITER, R. 1992. Characterizing diag-
noses and systems. In Readings in model-based diagnosis, pp. 54-65. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc. (pp.3, 11)

DE KLEER, J., RAIMAN, O., AND SHIRLEY, M. 1992. One step lookahead is pretty
good. In Readings in model-based diagnosis, pp. 138-142. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. (pp.5, 47, 56)

DE KLEER, J. AND WILLIAMS, B. C. 1987. Diagnosing multiple faults. Artificial In-
telligence 32,1, 97-130. (pp.5, 44, 45, 47, 49, 56)

DECHTER, R. 1996. Bucket elimination: A unifying framework for probabilistic
inference. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAD (1996), pp. 211-219. (pp.77,95)

DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. (p.81)

DECHTER, R. AND RISH, I. 2003. Mini-buckets: A general scheme for bounded
inference. Journal of the ACM 50, 2, 107-153. (p-78)

FELDMAN, A. AND VAN GEMUND, A. 2006. A two-step hierarchical algorithm for

model-based diagnosis. In Proceedings of the 21st National Conference on Artificial In-
telligence (AAAI) (2006). (pp.91, 92)

FLESCH, I., LUCAS, P., AND VAN DER WEIDE, T. 2007. Conflict-based diagnosis:
Adding uncertainty to model-based diagnosis. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI) (2007), pp- 380-385. (pp.93, 95)

Bibliography 101

FORBUS, K. D. AND DE KLEER, J. 1993. Building problem solvers. MIT Press, Cam-
bridge, MA, USA. (pp.4, 47, 56)

HANSEN, M. C., YALCIN, H., AND HAYES,]J. P. 1999. Unveiling the ISCAS-85

benchmarks: A case study in reverse engineering. IEEE Design and Test of Comput-
ers 16,3,72-80. (p.92)

HECKERMAN, D., BREESE, J. S., AND ROMMELSE, K. 1995. Decision-theoretic
troubleshooting. Communications of the ACM 38, 3, 49-57. (Ppi5 7 51,168,198 194)

HUANG, J. AND DARWICHE, A. 2005. On compiling system models for faster and
more scalable diagnosis. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI) (2005), pp. 300-306. (pp.2, 14, 22, 32)

JENSEN, F. V. 2001. Bayesian Networks and Decision Graphs. Springer-Verlag New
York, Inc., Secaucus, NJ, USA. (p.95)

KIRKLAND, T. AND MERCER, M. R. 1987. A topological search algorithm for
ATPG. In Proceedings of the 24th Conference on Design Automation (DAC) (1987), pp.
502-508. (pp.21,22)

LIN, L. AND JIANG, Y. 2003. The computation of hitting sets: review and new
algorithms. Information Processing Letters 86,4, 177-184. (pp.4,12)

[BURESVVANERIE=C P E HENG KT FANDIFANE R @ N D () 03 AVciretit SATE
solver with signal correlation guided learning. In Design, Automation and Test in
Europe (DATE) (2003), pp- 10892-10897. (p.20)

Lu, F.,, WANG, L.-C., CHENG, K.-T. T., MOONDANOS, J., AND HANNA, Z. 2003.
A signal correlation guided ATPG solver and its applications for solving difficult
industrial cases. In Proceedings of the 40th Conference on Design automation (DAC)
(2003), pp. 436—441. (p.20)

MARINESCU, R. AND DECHTER, R. 2007. Best-first AND/OR search for most prob-
able explanations. In Proceedings of the 23rd Conference on Uncertainty in Artificial
Intelligence (UAI) (2007). (pp. 89, 90, 96)

MARINESCU, R., KASK, K., AND DECHTER, R. 2003. Systematic vs. non-systematic
algorithms for solving the MPE task. In Proceedings of the 19th Conference on Uncer-
tainty in Artificial Intelligence (UAI) (2003). (pp. 85, 88)

PARK, J. D. 2002. Using weighted MAX-SAT engines to solve MPE. In Eighteenth
national conference on Artificial intelligence (Menlo Park, CA, USA, 2002), pp. 682-687.

American Association for Artificial Intelligence. (p.96)

102 Bibliography

PEARL, J. 1979. Entropy, information and rational decisions. Policy Analysis and

Information Systems, Special Issue on Mathematical Foundations 3, 1,93-109. (p.5)

PEARL,]J. 1988. Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco, CA, WSA S (ppro/iBZ)

PIPATSRISAWAT, K. AND DARWICHE, A. 2007. Clone: Solving weighted Max-SAT
in a reduced search space. In Proceedings of the 20th Australian Conference on Artificial
Intelligence (Al) (2007), pp. 223-233. (pp.-7, 65, 96)

REITER, R. 1987. A theory of diagnosis from first principles. Artificial Intelli-
genees2, 1, 57=-953"(pp-8,9)

SANG, T., BEAME, P, AND KauTz, H. 2005. Solving Bayesian networks by
weighted model counting. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI), Volume 1 (2005), pp. 475-482. AAAI Press. (p.85)

SHIMONY, S. E. 1994. Finding MAP:s for belief networks is NP-hard. Artificial Intel-
ligence 68, 2, 399-410. (pp.6, 73, 74)

SHIMONY, S. E. AND CHARNIAK, E. 1991. A new algorithm for finding MAP as-
signments to belief networks. In Proceedings of the 6th Conference on Uncertainty in
Artificial Intelligence (UAI) (New York, NY, USA, 1991), pp. 185-196. Elsevier Science
Inc:EN (pi96)

SIDDIQI, S. AND HUANG, J. 2007. Hierarchical diagnosis of multiple faults. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI) (2007),
Pp:58I1-5865(p29)

SIDDIQI, S. AND HUANG, J. 2008. Probabilistic sequential diagnosis by compila-
tion. In Proceedings of the 10th International Symposium on Artificial Intelligence and
Mathematics (ISAIM) (2008). (pp.35, 59)

SIDDIQI, S. AND HUANG, J. 2009. Variable and value ordering for MPE search.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI)
(2009), pp. 1964-1969. (p.73)

SMITH, A., VENERIS, A., AND VIGLAS, A. 2004. Design diagnosis using Boolean
satisfiability. In Proceedings of the Ninth Asia and South Pacific Design Automation Con-
ference (ASP-DAC) (2004), pp. 218-223. (p.91)

STRUSS,*P. AND DRESSLER; O. :1989. | “Physieal Negation” Integrating fault mod-
els into the general diagnostic engine. In Proceedings of the 11th International Joint

Conference on Artificial Intelligence (IJCAI) (1989), pp. 1318-1323. (pp.3, 11)

Bibliography 103

VARSHNEY, P. K., HARTMANN, C. R. P., AND DE FARIA, J., J. M. 1982. Applica-
tion of information theory to sequential fault diagnosis. IEEE Trans. Comput. 31, 2,
164-170. (p.93)

